These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

289 related articles for article (PubMed ID: 21867278)

  • 1. Homoclinic orbits and chaos in a pair of parametrically driven coupled nonlinear resonators.
    Kenig E; Tsarin YA; Lifshitz R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jul; 84(1 Pt 2):016212. PubMed ID: 21867278
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intrinsic localized modes in parametrically driven arrays of nonlinear resonators.
    Kenig E; Malomed BA; Cross MC; Lifshitz R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Oct; 80(4 Pt 2):046202. PubMed ID: 19905410
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Melnikov-type method for a class of hybrid piecewise-smooth systems with impulsive effect and noise excitation: Homoclinic orbits.
    Li Y; Wei Z; Zhang W; Yi M
    Chaos; 2022 Jul; 32(7):073119. PubMed ID: 35907728
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pattern selection in parametrically driven arrays of nonlinear resonators.
    Kenig E; Lifshitz R; Cross MC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Feb; 79(2 Pt 2):026203. PubMed ID: 19391816
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Response of discrete nonlinear systems with many degrees of freedom.
    Bromberg Y; Cross MC; Lifshitz R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jan; 73(1 Pt 2):016214. PubMed ID: 16486265
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Melnikov-type method for a class of planar hybrid piecewise-smooth systems with impulsive effect and noise excitation: Heteroclinic orbits.
    Wei Z; Li Y; Moroz I; Zhang W
    Chaos; 2022 Oct; 32(10):103127. PubMed ID: 36319280
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Homoclinic behaviors and chaotic motions of double layered viscoelastic nanoplates based on nonlocal theory and extended Melnikov method.
    Wang Y; Li FM; Wang YZ
    Chaos; 2015 Jun; 25(6):063108. PubMed ID: 26117102
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Homoclinic-doubling and homoclinic-gluing bifurcations in the Takens-Bogdanov normal form with
    Qin BW; Chung KW; Rodríguez-Luis AJ; Belhaq M
    Chaos; 2018 Sep; 28(9):093107. PubMed ID: 30278647
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Melnikov analysis of chaos in a simple SIR model with periodically or stochastically modulated nonlinear incidence rate.
    Shi Y
    J Biol Dyn; 2020 Dec; 14(1):269-288. PubMed ID: 32281489
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Signatures of homoclinic motion in quantum chaos.
    Wisniacki DA; Vergini E; Benito RM; Borondo F
    Phys Rev Lett; 2005 Feb; 94(5):054101. PubMed ID: 15783643
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On infinite homoclinic orbits induced by unstable periodic orbits in the Lorenz system.
    Guo S; Luo ACJ
    Chaos; 2021 Apr; 31(4):043106. PubMed ID: 34251254
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multidimensional Hamiltonian chaos.
    Shilnikov LP
    Chaos; 1991 Aug; 1(2):134-136. PubMed ID: 12779905
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Numerical proof for chemostat chaos of Shilnikov's type.
    Deng B; Han M; Hsu SB
    Chaos; 2017 Mar; 27(3):033106. PubMed ID: 28364739
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Slow passage through a transcritical bifurcation for Hamiltonian systems and the change in action due to a nonhyperbolic homoclinic orbit.
    Haberman R
    Chaos; 2000 Sep; 10(3):641-648. PubMed ID: 12779413
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Basic structures of the Shilnikov homoclinic bifurcation scenario.
    Medrano-T RO; Baptista MS; Caldas IL
    Chaos; 2005 Sep; 15(3):33112. PubMed ID: 16252986
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Energy enhancement and chaos control in microelectromechanical systems.
    Park K; Chen Q; Lai YC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Feb; 77(2 Pt 2):026210. PubMed ID: 18352106
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Saddle-center and periodic orbit: Dynamics near symmetric heteroclinic connection.
    Lerman LM; Trifonov KN
    Chaos; 2021 Feb; 31(2):023113. PubMed ID: 33653062
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On chaotic dynamics in "pseudobilliard" Hamiltonian systems with two degrees of freedom.
    Eleonsky VM; Korolev VG; Kulagin NE
    Chaos; 1997 Dec; 7(4):710-730. PubMed ID: 12779697
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Low-dimensional chaos in the single wave model for self-consistent wave-particle Hamiltonian.
    Gomes JV; de Sousa MC; Viana RL; Caldas IL; Elskens Y
    Chaos; 2021 Aug; 31(8):083104. PubMed ID: 34470246
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-frequency nanofluidics: a universal formulation of the fluid dynamics of MEMS and NEMS.
    Ekinci KL; Yakhot V; Rajauria S; Colosqui C; Karabacak DM
    Lab Chip; 2010 Nov; 10(22):3013-25. PubMed ID: 20862440
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.