These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 21867295)

  • 1. Optimal phase response curves for stochastic synchronization of limit-cycle oscillators by common Poisson noise.
    Hata S; Arai K; Galán RF; Nakao H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jul; 84(1 Pt 2):016229. PubMed ID: 21867295
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stochastic synchronization of neural activity waves.
    Kilpatrick ZP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Apr; 91(4):040701. PubMed ID: 25974427
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Robustness of the noise-induced phase synchronization in a general class of limit cycle oscillators.
    Teramae JN; Tanaka D
    Phys Rev Lett; 2004 Nov; 93(20):204103. PubMed ID: 15600929
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimization of noise-induced synchronization of oscillator networks.
    Kawamura Y; Nakao H
    Phys Rev E; 2016 Sep; 94(3-1):032201. PubMed ID: 27739705
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phase coherence in an ensemble of uncoupled limit-cycle oscillators receiving common Poisson impulses.
    Arai K; Nakao H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Mar; 77(3 Pt 2):036218. PubMed ID: 18517496
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Class-II neurons display a higher degree of stochastic synchronization than class-I neurons.
    Marella S; Ermentrout GB
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Apr; 77(4 Pt 1):041918. PubMed ID: 18517667
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nonequilibrium Lyapunov function and a fluctuation relation for stochastic systems: Poisson-representation approach.
    Petrosyan KG; Hu CK
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Apr; 89(4):042132. PubMed ID: 24827217
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stochastic phase reduction for a general class of noisy limit cycle oscillators.
    Teramae JN; Nakao H; Ermentrout GB
    Phys Rev Lett; 2009 May; 102(19):194102. PubMed ID: 19518956
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synchronization of stochastic hybrid oscillators driven by a common switching environment.
    Bressloff PC; MacLaurin J
    Chaos; 2018 Dec; 28(12):123123. PubMed ID: 30599535
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stochastic bifurcation in noise-driven lasers and Hopf oscillators.
    Wieczorek S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Mar; 79(3 Pt 2):036209. PubMed ID: 19392037
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of common noise on phase synchronization in coupled chaotic oscillators.
    Park K; Lai YC; Krishnamoorthy S; Kandangath A
    Chaos; 2007 Mar; 17(1):013105. PubMed ID: 17411241
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synchrony of limit-cycle oscillators induced by random external impulses.
    Nakao H; Arai KS; Nagai K; Tsubo Y; Kuramoto Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Aug; 72(2 Pt 2):026220. PubMed ID: 16196697
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phase reduction method for strongly perturbed limit cycle oscillators.
    Kurebayashi W; Shirasaka S; Nakao H
    Phys Rev Lett; 2013 Nov; 111(21):214101. PubMed ID: 24313491
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimization of linear and nonlinear interaction schemes for stable synchronization of weakly coupled limit-cycle oscillators.
    Watanabe N; Kato Y; Shirasaka S; Nakao H
    Phys Rev E; 2019 Oct; 100(4-1):042205. PubMed ID: 31770949
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effective long-time phase dynamics of limit-cycle oscillators driven by weak colored noise.
    Nakao H; Teramae JN; Goldobin DS; Kuramoto Y
    Chaos; 2010 Sep; 20(3):033126. PubMed ID: 20887066
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synchronization of genetic oscillators.
    Zhou T; Zhang J; Yuan Z; Chen L
    Chaos; 2008 Sep; 18(3):037126. PubMed ID: 19045500
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Complete synchronization of the global coupled dynamical network induced by Poisson noises.
    Guo Q; Wan F
    PLoS One; 2017; 12(12):e0188632. PubMed ID: 29216214
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interacting stochastic oscillators.
    Zhang J; Yuan Z; Wang J; Zhou T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Feb; 77(2 Pt 1):021101. PubMed ID: 18351981
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synchronization of uncoupled oscillators by common gamma impulses: From phase locking to noise-induced synchronization.
    Hata S; Shimokawa T; Arai K; Nakao H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Sep; 82(3 Pt 2):036206. PubMed ID: 21230160
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Non-Markovian stochastic processes: colored noise.
    Łuczka J
    Chaos; 2005 Jun; 15(2):26107. PubMed ID: 16035909
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.