These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
144 related articles for article (PubMed ID: 21867338)
1. Method for sampling compact configurations for semistiff polymers. Siretskiy A; Elvingson C; Vorontsov-Velyaminov P; Khan MO Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jul; 84(1 Pt 2):016702. PubMed ID: 21867338 [TBL] [Abstract][Full Text] [Related]
2. Phase transitions of a single polymer chain: A Wang-Landau simulation study. Taylor MP; Paul W; Binder K J Chem Phys; 2009 Sep; 131(11):114907. PubMed ID: 19778149 [TBL] [Abstract][Full Text] [Related]
3. Secondary structures in long compact polymers. Oberdorf R; Ferguson A; Jacobsen JL; Kondev J Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Nov; 74(5 Pt 1):051801. PubMed ID: 17279930 [TBL] [Abstract][Full Text] [Related]
4. Number fluctuations of the condensing agent affects the coil-toroid coexistence for semi-stiff polyelectrolytes. Siretskiy A; Khan M J Phys Condens Matter; 2010 Oct; 22(41):414103. PubMed ID: 21386586 [TBL] [Abstract][Full Text] [Related]
5. Interacting elastic lattice polymers: a study of the free energy of globular rings. Baiesi M; Orlandini E Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jun; 89(6):062601. PubMed ID: 25019804 [TBL] [Abstract][Full Text] [Related]
6. Probing the tails of the ground-state energy distribution for the directed polymer in a random medium of dimension d=1,2,3 via a Monte Carlo procedure in the disorder. Monthus C; Garel T Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Nov; 74(5 Pt 1):051109. PubMed ID: 17279879 [TBL] [Abstract][Full Text] [Related]
7. Monte Carlo simulation and molecular theory of tethered polyelectrolytes. Hehmeyer OJ; Arya G; Panagiotopoulos AZ; Szleifer I J Chem Phys; 2007 Jun; 126(24):244902. PubMed ID: 17614585 [TBL] [Abstract][Full Text] [Related]
8. Monte Carlo calculation of second and third virial coefficients of small-scale comb polymers on lattice. Shida K; Kasuya A; Ohno K; Kawazoe Y; Nakamura Y J Chem Phys; 2007 Apr; 126(15):154901. PubMed ID: 17461661 [TBL] [Abstract][Full Text] [Related]
9. A Wang-Landau study of a lattice model for lipid bilayer self-assembly. Gai L; Maerzke K; Cummings PT; McCabe C J Chem Phys; 2012 Oct; 137(14):144901. PubMed ID: 23061859 [TBL] [Abstract][Full Text] [Related]
10. Multicanonical Monte Carlo simulations on intramolecular micelle formation in copolymers. Koga T Eur Phys J E Soft Matter; 2005 Jul; 17(3):381-8. PubMed ID: 16021342 [TBL] [Abstract][Full Text] [Related]
11. Asymmetric bridging of interconnected pores by encased semiflexible macromolecules. Cifra P J Chem Phys; 2006 Jan; 124(2):024706. PubMed ID: 16422625 [TBL] [Abstract][Full Text] [Related]
12. Determination of the equilibrium charge distribution for polyampholytes of different compactness in a single computer experiment. Siretskiy A; Elvingson C; Khan MO J Phys Condens Matter; 2011 Sep; 23(37):375102. PubMed ID: 21878717 [TBL] [Abstract][Full Text] [Related]
13. From toroidal to rod-like condensates of semiflexible polymers. Hoang TX; Giacometti A; Podgornik R; Nguyen NT; Banavar JR; Maritan A J Chem Phys; 2014 Feb; 140(6):064902. PubMed ID: 24527935 [TBL] [Abstract][Full Text] [Related]
14. Phase behavior and structure formation in linear multiblock copolymer solutions by Monte Carlo simulation. Gindy ME; Prud'homme RK; Panagiotopoulos AZ J Chem Phys; 2008 Apr; 128(16):164906. PubMed ID: 18447499 [TBL] [Abstract][Full Text] [Related]
15. Wang-Landau method for calculating Rényi entropies in finite-temperature quantum Monte Carlo simulations. Inglis S; Melko RG Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jan; 87(1):013306. PubMed ID: 23410459 [TBL] [Abstract][Full Text] [Related]
16. Effects of chain flexibility on polymer conformation in dilute solution studied by lattice monte carlo simulation. Li Y; Huang Q; Shi T; An L J Phys Chem B; 2006 Nov; 110(46):23502-6. PubMed ID: 17107205 [TBL] [Abstract][Full Text] [Related]
17. Parallel excluded volume tempering for polymer melts. Bunker A; Dünweg B Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Jan; 63(1 Pt 2):016701. PubMed ID: 11304387 [TBL] [Abstract][Full Text] [Related]
18. Confinement causes opposite effects on the folding transition of a single polymer chain depending on its stiffness. Higuchi Y; Yoshikawa K; Iwaki T Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Aug; 84(2 Pt 1):021924. PubMed ID: 21929035 [TBL] [Abstract][Full Text] [Related]
19. Loops, tails and trains: A simple model for structural transformations of grafted adsorbing neutral polymer brushes. Manciu M; Ruckenstein E J Colloid Interface Sci; 2011 Feb; 354(1):61-9. PubMed ID: 21074164 [TBL] [Abstract][Full Text] [Related]
20. On the stability of fractal globules. Schram RD; Barkema GT; Schiessel H J Chem Phys; 2013 Jun; 138(22):224901. PubMed ID: 23781815 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]