BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 21867511)

  • 1. Parallelized short read assembly of large genomes using de Bruijn graphs.
    Liu Y; Schmidt B; Maskell DL
    BMC Bioinformatics; 2011 Aug; 12():354. PubMed ID: 21867511
    [TBL] [Abstract][Full Text] [Related]  

  • 2. FastEtch: A Fast Sketch-Based Assembler for Genomes.
    Ghosh P; Kalyanaraman A
    IEEE/ACM Trans Comput Biol Bioinform; 2019; 16(4):1091-1106. PubMed ID: 28910776
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Benchmarking of de novo assembly algorithms for Nanopore data reveals optimal performance of OLC approaches.
    Cherukuri Y; Janga SC
    BMC Genomics; 2016 Aug; 17 Suppl 7(Suppl 7):507. PubMed ID: 27556636
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Clover: a clustering-oriented de novo assembler for Illumina sequences.
    Hsieh MF; Lu CL; Tang CY
    BMC Bioinformatics; 2020 Nov; 21(1):528. PubMed ID: 33203354
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Benchmarking and Assessment of Eight
    Gupta AK; Kumar M
    OMICS; 2022 Jul; 26(7):372-381. PubMed ID: 35759429
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assembler for de novo assembly of large genomes.
    Chu TC; Lu CH; Liu T; Lee GC; Li WH; Shih AC
    Proc Natl Acad Sci U S A; 2013 Sep; 110(36):E3417-24. PubMed ID: 23966565
    [TBL] [Abstract][Full Text] [Related]  

  • 7. RResolver: efficient short-read repeat resolution within ABySS.
    Nikolić V; Afshinfard A; Chu J; Wong J; Coombe L; Nip KM; Warren RL; Birol I
    BMC Bioinformatics; 2022 Jun; 23(1):246. PubMed ID: 35729491
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DecGPU: distributed error correction on massively parallel graphics processing units using CUDA and MPI.
    Liu Y; Schmidt B; Maskell DL
    BMC Bioinformatics; 2011 Mar; 12():85. PubMed ID: 21447171
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Integration of string and de Bruijn graphs for genome assembly.
    Huang YT; Liao CF
    Bioinformatics; 2016 May; 32(9):1301-7. PubMed ID: 26755626
    [TBL] [Abstract][Full Text] [Related]  

  • 10. B-assembler: a circular bacterial genome assembler.
    Huang F; Xiao L; Gao M; Vallely EJ; Dybvig K; Atkinson TP; Waites KB; Chong Z
    BMC Genomics; 2022 May; 23(Suppl 4):361. PubMed ID: 35546658
    [TBL] [Abstract][Full Text] [Related]  

  • 11. BASE: a practical de novo assembler for large genomes using long NGS reads.
    Liu B; Liu CM; Li D; Li Y; Ting HF; Yiu SM; Luo R; Lam TW
    BMC Genomics; 2016 Aug; 17 Suppl 5(Suppl 5):499. PubMed ID: 27586129
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multiplex de Bruijn graphs enable genome assembly from long, high-fidelity reads.
    Bankevich A; Bzikadze AV; Kolmogorov M; Antipov D; Pevzner PA
    Nat Biotechnol; 2022 Jul; 40(7):1075-1081. PubMed ID: 35228706
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Subset selection of high-depth next generation sequencing reads for de novo genome assembly using MapReduce framework.
    Fang CH; Chang YJ; Chung WC; Hsieh PH; Lin CY; Ho JM
    BMC Genomics; 2015; 16 Suppl 12(Suppl 12):S9. PubMed ID: 26678408
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of nine popular de novo assemblers in microbial genome assembly.
    Forouzan E; Maleki MSM; Karkhane AA; Yakhchali B
    J Microbiol Methods; 2017 Dec; 143():32-37. PubMed ID: 28939423
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A practical comparison of de novo genome assembly software tools for next-generation sequencing technologies.
    Zhang W; Chen J; Yang Y; Tang Y; Shang J; Shen B
    PLoS One; 2011 Mar; 6(3):e17915. PubMed ID: 21423806
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ABySS: a parallel assembler for short read sequence data.
    Simpson JT; Wong K; Jackman SD; Schein JE; Jones SJ; Birol I
    Genome Res; 2009 Jun; 19(6):1117-23. PubMed ID: 19251739
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Parallel and Scalable Short-Read Alignment on Multi-Core Clusters Using UPC+.
    González-Domínguez J; Liu Y; Schmidt B
    PLoS One; 2016; 11(1):e0145490. PubMed ID: 26731399
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efficient parallel and out of core algorithms for constructing large bi-directed de Bruijn graphs.
    Kundeti VK; Rajasekaran S; Dinh H; Vaughn M; Thapar V
    BMC Bioinformatics; 2010 Nov; 11():560. PubMed ID: 21078174
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparing memory-efficient genome assemblers on stand-alone and cloud infrastructures.
    Kleftogiannis D; Kalnis P; Bajic VB
    PLoS One; 2013; 8(9):e75505. PubMed ID: 24086547
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The present and future of de novo whole-genome assembly.
    Sohn JI; Nam JW
    Brief Bioinform; 2018 Jan; 19(1):23-40. PubMed ID: 27742661
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.