These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 21867520)

  • 1. Steady-state global optimization of metabolic non-linear dynamic models through recasting into power-law canonical models.
    Pozo C; Marín-Sanguino A; Alves R; Guillén-Gosálbez G; Jiménez L; Sorribas A
    BMC Syst Biol; 2011 Aug; 5():137. PubMed ID: 21867520
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identifying the preferred subset of enzymatic profiles in nonlinear kinetic metabolic models via multiobjective global optimization and Pareto filters.
    Pozo C; Guillén-Gosálbez G; Sorribas A; Jiménez L
    PLoS One; 2012; 7(9):e43487. PubMed ID: 23028457
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cooperativity and saturation in biochemical networks: a saturable formalism using Taylor series approximations.
    Sorribas A; Hernández-Bermejo B; Vilaprinyo E; Alves R
    Biotechnol Bioeng; 2007 Aug; 97(5):1259-77. PubMed ID: 17187441
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mathematical formalisms based on approximated kinetic representations for modeling genetic and metabolic pathways.
    Alves R; Vilaprinyo E; Hernádez-Bermejo B; Sorribas A
    Biotechnol Genet Eng Rev; 2008; 25():1-40. PubMed ID: 21412348
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling metabolic networks in C. glutamicum: a comparison of rate laws in combination with various parameter optimization strategies.
    Dräger A; Kronfeld M; Ziller MJ; Supper J; Planatscher H; Magnus JB; Oldiges M; Kohlbacher O; Zell A
    BMC Syst Biol; 2009 Jan; 3():5. PubMed ID: 19144170
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identifying quantitative operation principles in metabolic pathways: a systematic method for searching feasible enzyme activity patterns leading to cellular adaptive responses.
    Guillén-Gosálbez G; Sorribas A
    BMC Bioinformatics; 2009 Nov; 10():386. PubMed ID: 19930714
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimization of biochemical systems by linear programming and general mass action model representations.
    Marín-Sanguino A; Torres NV
    Math Biosci; 2003 Aug; 184(2):187-200. PubMed ID: 12832147
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolic Engineering with power-law and linear-logarithmic systems.
    Marin-Sanguino A; Torres NV; Mendoza ER; Oesterhelt D
    Math Biosci; 2009 Mar; 218(1):50-8. PubMed ID: 19174172
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Canonical sensitivities: a useful tool to deal with large perturbations in metabolic network modeling.
    Guebel DV
    In Silico Biol; 2004; 4(2):163-82. PubMed ID: 15107021
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of metabolic system parameters using global optimization methods.
    Polisetty PK; Voit EO; Gatzke EP
    Theor Biol Med Model; 2006 Jan; 3():4. PubMed ID: 16441881
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimization and evolution in metabolic pathways: global optimization techniques in Generalized Mass Action models.
    Sorribas A; Pozo C; Vilaprinyo E; Guillén-Gosálbez G; Jiménez L; Alves R
    J Biotechnol; 2010 Sep; 149(3):141-53. PubMed ID: 20152867
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multicriteria optimization of biochemical systems by linear programming: application to production of ethanol by Saccharomyces cerevisiae.
    Vera J; de Atauri P; Cascante M; Torres NV
    Biotechnol Bioeng; 2003 Aug; 83(3):335-43. PubMed ID: 12783489
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An improved hybrid of particle swarm optimization and the gravitational search algorithm to produce a kinetic parameter estimation of aspartate biochemical pathways.
    Ismail AM; Mohamad MS; Abdul Majid H; Abas KH; Deris S; Zaki N; Mohd Hashim SZ; Ibrahim Z; Remli MA
    Biosystems; 2017 Dec; 162():81-89. PubMed ID: 28951204
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Extraction of elementary rate constants from global network analysis of E. coli central metabolism.
    Zhao J; Ridgway D; Broderick G; Kovalenko A; Ellison M
    BMC Syst Biol; 2008 May; 2():41. PubMed ID: 18462493
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Towards kinetic modeling of genome-scale metabolic networks without sacrificing stoichiometric, thermodynamic and physiological constraints.
    Chakrabarti A; Miskovic L; Soh KC; Hatzimanikatis V
    Biotechnol J; 2013 Sep; 8(9):1043-57. PubMed ID: 23868566
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A newton cooperative genetic algorithm method for in silico optimization of metabolic pathway production.
    Ismail MA; Deris S; Mohamad MS; Abdullah A
    PLoS One; 2015; 10(5):e0126199. PubMed ID: 25961295
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metabolism of citric acid production by Aspergillus niger: model definition, steady-state analysis and constrained optimization of citric acid production rate.
    Alvarez-Vasquez F; González-Alcón C; Torres NV
    Biotechnol Bioeng; 2000 Oct; 70(1):82-108. PubMed ID: 10940866
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mathematics of organizationally complex systems.
    Savageau MA
    Biomed Biochim Acta; 1985; 44(6):839-44. PubMed ID: 4038284
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deterministic global optimization algorithm based on outer approximation for the parameter estimation of nonlinear dynamic biological systems.
    Miró A; Pozo C; Guillén-Gosálbez G; Egea JA; Jiménez L
    BMC Bioinformatics; 2012 May; 13():90. PubMed ID: 22574924
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimization of biotechnological systems through geometric programming.
    Marin-Sanguino A; Voit EO; Gonzalez-Alcon C; Torres NV
    Theor Biol Med Model; 2007 Sep; 4():38. PubMed ID: 17897440
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.