These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
217 related articles for article (PubMed ID: 21867708)
21. Biosynthesis and immunity of epoxyeicosatrienoic acids in a lepidopteran insect, Spodoptera exigua. Vatanparast M; Lee DH; Kim Y Dev Comp Immunol; 2020 Jun; 107():103643. PubMed ID: 32067998 [TBL] [Abstract][Full Text] [Related]
22. Octopamine and 5-hydroxytryptamine mediate hemocytic phagocytosis and nodule formation via eicosanoids in the beet armyworm, Spodoptera exigua. Kim GS; Nalini M; Kim Y; Lee DW Arch Insect Biochem Physiol; 2009 Mar; 70(3):162-76. PubMed ID: 19140126 [TBL] [Abstract][Full Text] [Related]
23. Expression of pheromone biosynthesis activating neuropeptide and its receptor (PBANR) mRNA in adult female Spodoptera exigua (Lepidoptera: Noctuidae). Cheng Y; Luo L; Jiang X; Zhang L; Niu C Arch Insect Biochem Physiol; 2010 Sep; 75(1):13-27. PubMed ID: 20665850 [TBL] [Abstract][Full Text] [Related]
24. Cloning and expression of the gene encoding the diapause hormone and pheromone biosynthesis activating neuropeptide of the beet armyworm, Spodoptera exigua. Xu J; Su JY; Shen JL; Xu WH DNA Seq; 2007 Apr; 18(2):145-51. PubMed ID: 17364826 [TBL] [Abstract][Full Text] [Related]
25. Roles of peroxinectin in PGE2-mediated cellular immunity in Spodoptera exigua. Park J; Stanley D; Kim Y PLoS One; 2014; 9(9):e105717. PubMed ID: 25191834 [TBL] [Abstract][Full Text] [Related]
26. A target-specific feeding toxicity of β(1) integrin dsRNA against diamondback moth, Plutella xylostella. Mohamed AA; Kim Y Arch Insect Biochem Physiol; 2011 Dec; 78(4):216-30. PubMed ID: 22105667 [TBL] [Abstract][Full Text] [Related]
27. Lysozymes and lysozyme-like proteins from the fall armyworm, Spodoptera frugiperda. Chapelle M; Girard PA; Cousserans F; Volkoff NA; Duvic B Mol Immunol; 2009 Dec; 47(2-3):261-9. PubMed ID: 19828200 [TBL] [Abstract][Full Text] [Related]
28. Characterization of a tyramine receptor type 2 from hemocytes of rice stem borer, Chilo suppressalis. Wu SF; Xu G; Ye GY J Insect Physiol; 2015 Apr; 75():39-46. PubMed ID: 25772095 [TBL] [Abstract][Full Text] [Related]
29. Characterization of the first insect prostaglandin (PGE Kwon H; Yang Y; Kumar S; Lee DW; Bajracharya P; Calkins TL; Kim Y; Pietrantonio PV Insect Biochem Mol Biol; 2020 Feb; 117():103290. PubMed ID: 31790798 [TBL] [Abstract][Full Text] [Related]
30. Biosynthetic pathway of arachidonic acid in Spodoptera exigua in response to bacterial challenge. Hasan MA; Ahmed S; Kim Y Insect Biochem Mol Biol; 2019 Aug; 111():103179. PubMed ID: 31255640 [TBL] [Abstract][Full Text] [Related]
31. Cloning of prophenoloxidase from hemocytes of the blue crab, Callinectes sapidus and its expression and enzyme activity during the molt cycle. Alvarez JV; Chung JS Fish Shellfish Immunol; 2013 Nov; 35(5):1349-58. PubMed ID: 23968691 [TBL] [Abstract][Full Text] [Related]
32. Gene cloning, expression, and function analysis of SpL14-3-3ζ in Spodoptera litura and its response to the entomopathogenic fungus Nomuraea rileyi. Feng E; Chen H; Li Y; Jiang W; Wang Z; Yin Y Comp Biochem Physiol B Biochem Mol Biol; 2014; 172-173():49-56. PubMed ID: 24747013 [TBL] [Abstract][Full Text] [Related]
33. The prostanoids, thromboxanes, mediate hemocytic immunity to bacterial infection in the lepidopteran Spodoptera exigua. Al Baki MA; Chandra Roy M; Lee DH; Stanley D; Kim Y Dev Comp Immunol; 2021 Jul; 120():104069. PubMed ID: 33737116 [TBL] [Abstract][Full Text] [Related]
34. A novel calcium-independent phospholipase A Sadekuzzaman M; Gautam N; Kim Y Dev Comp Immunol; 2017 Dec; 77():210-220. PubMed ID: 28851514 [TBL] [Abstract][Full Text] [Related]
35. EpOMEs act as immune suppressors in a lepidopteran insect, Spodoptera exigua. Vatanparast M; Ahmed S; Lee DH; Hwang SH; Hammock B; Kim Y Sci Rep; 2020 Nov; 10(1):20183. PubMed ID: 33214688 [TBL] [Abstract][Full Text] [Related]
36. Identification and tissue distribution of odorant binding protein genes in the beet armyworm, Spodoptera exigua. Zhu JY; Zhang LF; Ze SZ; Wang DW; Yang B J Insect Physiol; 2013 Jul; 59(7):722-8. PubMed ID: 23499610 [TBL] [Abstract][Full Text] [Related]
37. An ovary-specific mucin is associated with choriogenesis mediated by prostaglandin signaling in Spodoptera exigua. Ahmed S; Seo K; Kim Y Arch Insect Biochem Physiol; 2021 Jan; 106(1):e21748. PubMed ID: 33038048 [TBL] [Abstract][Full Text] [Related]
38. Molecular and cellular analyses of a ryanodine receptor from hemocytes of Pieris rapae. Wu S; Wang F; Huang J; Fang Q; Shen Z; Ye G Dev Comp Immunol; 2013 Sep; 41(1):1-10. PubMed ID: 23603125 [TBL] [Abstract][Full Text] [Related]
39. Regulation of hemolymph trehalose level by an insulin-like peptide through diel feeding rhythm of the beet armyworm, Spodoptera exigua. Kim Y; Hong Y Peptides; 2015 Jun; 68():91-8. PubMed ID: 25703302 [TBL] [Abstract][Full Text] [Related]
40. An entomopathogenic bacterium, Xenorhabdus nematophila, inhibits the expression of an antibacterial peptide, cecropin, of the beet armyworm, Spodoptera exigua. Ji D; Kim Y J Insect Physiol; 2004 Jun; 50(6):489-96. PubMed ID: 15183278 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]