These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

415 related articles for article (PubMed ID: 21867802)

  • 1. Reducing surface area while maintaining implant penetrating profile lowers the brain foreign body response to chronically implanted planar silicon microelectrode arrays.
    Skousen JL; Merriam SM; Srivannavit O; Perlin G; Wise KD; Tresco PA
    Prog Brain Res; 2011; 194():167-80. PubMed ID: 21867802
    [TBL] [Abstract][Full Text] [Related]  

  • 2. BBB leakage, astrogliosis, and tissue loss correlate with silicon microelectrode array recording performance.
    Nolta NF; Christensen MB; Crane PD; Skousen JL; Tresco PA
    Biomaterials; 2015; 53():753-62. PubMed ID: 25890770
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neuronal cell loss accompanies the brain tissue response to chronically implanted silicon microelectrode arrays.
    Biran R; Martin DC; Tresco PA
    Exp Neurol; 2005 Sep; 195(1):115-26. PubMed ID: 16045910
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultrasoft microwire neural electrodes improve chronic tissue integration.
    Du ZJ; Kolarcik CL; Kozai TDY; Luebben SD; Sapp SA; Zheng XS; Nabity JA; Cui XT
    Acta Biomater; 2017 Apr; 53():46-58. PubMed ID: 28185910
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Toward a comparison of microelectrodes for acute and chronic recordings.
    Ward MP; Rajdev P; Ellison C; Irazoqui PP
    Brain Res; 2009 Jul; 1282():183-200. PubMed ID: 19486899
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The brain tissue response to implanted silicon microelectrode arrays is increased when the device is tethered to the skull.
    Biran R; Martin DC; Tresco PA
    J Biomed Mater Res A; 2007 Jul; 82(1):169-78. PubMed ID: 17266019
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A strategy to passively reduce neuroinflammation surrounding devices implanted chronically in brain tissue by manipulating device surface permeability.
    Skousen JL; Bridge MJ; Tresco PA
    Biomaterials; 2015 Jan; 36():33-43. PubMed ID: 25310936
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bioactive properties of nanostructured porous silicon for enhancing electrode to neuron interfaces.
    Moxon KA; Hallman S; Aslani A; Kalkhoran NM; Lelkes PI
    J Biomater Sci Polym Ed; 2007; 18(10):1263-81. PubMed ID: 17939885
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanostructured surface modification of ceramic-based microelectrodes to enhance biocompatibility for a direct brain-machine interface.
    Moxon KA; Kalkhoran NM; Markert M; Sambito MA; McKenzie JL; Webster JT
    IEEE Trans Biomed Eng; 2004 Jun; 51(6):881-9. PubMed ID: 15188854
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of microglial attachment and cytokine release on biomaterials of differing surface chemistry.
    Leung BK; Biran R; Underwood CJ; Tresco PA
    Biomaterials; 2008 Aug; 29(23):3289-97. PubMed ID: 18485471
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An astrocyte derived extracellular matrix coating reduces astrogliosis surrounding chronically implanted microelectrode arrays in rat cortex.
    Oakes RS; Polei MD; Skousen JL; Tresco PA
    Biomaterials; 2018 Feb; 154():1-11. PubMed ID: 29117574
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In-vivo implant mechanics of flexible, silicon-based ACREO microelectrode arrays in rat cerebral cortex.
    Jensen W; Yoshida K; Hofmann UG
    IEEE Trans Biomed Eng; 2006 May; 53(5):934-40. PubMed ID: 16686416
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Critical Review of Microelectrode Arrays and Strategies for Improving Neural Interfaces.
    Ferguson M; Sharma D; Ross D; Zhao F
    Adv Healthc Mater; 2019 Oct; 8(19):e1900558. PubMed ID: 31464094
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comprehensive characterization and failure modes of tungsten microwire arrays in chronic neural implants.
    Prasad A; Xue QS; Sankar V; Nishida T; Shaw G; Streit WJ; Sanchez JC
    J Neural Eng; 2012 Oct; 9(5):056015. PubMed ID: 23010756
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Voltage pulses change neural interface properties and improve unit recordings with chronically implanted microelectrodes.
    Otto KJ; Johnson MD; Kipke DR
    IEEE Trans Biomed Eng; 2006 Feb; 53(2):333-40. PubMed ID: 16485763
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Response of brain tissue to chronically implanted neural electrodes.
    Polikov VS; Tresco PA; Reichert WM
    J Neurosci Methods; 2005 Oct; 148(1):1-18. PubMed ID: 16198003
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Distribution patterns of the membrane glycoprotein CD44 during the foreign-body reaction to a degradable biomaterial in rats and mice.
    Bonnema H; Popa ER; van Timmeren MM; van Wachem PB; de Leij LF; van Luyn MJ
    J Biomed Mater Res A; 2003 Mar; 64(3):502-8. PubMed ID: 12579564
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A comparison of the tissue response to chronically implanted Parylene-C-coated and uncoated planar silicon microelectrode arrays in rat cortex.
    Winslow BD; Christensen MB; Yang WK; Solzbacher F; Tresco PA
    Biomaterials; 2010 Dec; 31(35):9163-72. PubMed ID: 20561678
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Visualization of the intact interface between neural tissue and implanted microelectrode arrays.
    Holecko MM; Williams JC; Massia SP
    J Neural Eng; 2005 Dec; 2(4):97-102. PubMed ID: 16317233
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vivo electrical impedance spectroscopy of tissue reaction to microelectrode arrays.
    Mercanzini A; Colin P; Bensadoun JC; Bertsch A; Renaud P
    IEEE Trans Biomed Eng; 2009 Jul; 56(7):1909-18. PubMed ID: 19362904
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.