These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

65 related articles for article (PubMed ID: 21867805)

  • 1. Modeling the potentiality of spinal-like circuitry for stabilization of a planar arm system.
    Tsianos GA; Raphael G; Loeb GE
    Prog Brain Res; 2011; 194():203-13. PubMed ID: 21867805
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spinal-like regulator facilitates control of a two-degree-of-freedom wrist.
    Raphael G; Tsianos GA; Loeb GE
    J Neurosci; 2010 Jul; 30(28):9431-44. PubMed ID: 20631172
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of cocontraction in arm movement accuracy.
    Gribble PL; Mullin LI; Cothros N; Mattar A
    J Neurophysiol; 2003 May; 89(5):2396-405. PubMed ID: 12611935
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Useful properties of spinal circuits for learning and performing planar reaches.
    Tsianos GA; Goodner J; Loeb GE
    J Neural Eng; 2014 Oct; 11(5):056006. PubMed ID: 25082652
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Task-specific depression of the soleus H-reflex after cocontraction training of antagonistic ankle muscles.
    Perez MA; Lundbye-Jensen J; Nielsen JB
    J Neurophysiol; 2007 Dec; 98(6):3677-87. PubMed ID: 17942616
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differential neural correlates of reciprocal activation and cocontraction control in dorsal and ventral premotor cortices.
    Haruno M; Ganesh G; Burdet E; Kawato M
    J Neurophysiol; 2012 Jan; 107(1):126-33. PubMed ID: 21994262
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modulation of human cervical premotoneurons during bilateral voluntary contraction of upper-limb muscles.
    Stinear JW; Byblow WD
    Muscle Nerve; 2004 Apr; 29(4):506-14. PubMed ID: 15052615
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modulation of spinal inhibitory reflex responses to cutaneous nociceptive stimuli during upper limb movement.
    Don R; Pierelli F; Ranavolo A; Serrao M; Mangone M; Paoloni M; Cacchio A; Sandrini G; Santilli V
    Eur J Neurosci; 2008 Aug; 28(3):559-68. PubMed ID: 18702727
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Laboratory evaluation of a unified theory for simultaneous multiple axis artificial arm control.
    Jerard RB; Jacobsen SC
    J Biomech Eng; 1980 Aug; 102(3):199. PubMed ID: 19530801
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On the effect of muscular cocontraction on the 3-D human arm impedance.
    Patel H; O'Neill G; Artemiadis P
    IEEE Trans Biomed Eng; 2014 Oct; 61(10):2602-8. PubMed ID: 24835125
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neural control of rhythmic human arm movement: phase dependence and task modulation of hoffmann reflexes in forearm muscles.
    Zehr EP; Collins DF; Frigon A; Hoogenboom N
    J Neurophysiol; 2003 Jan; 89(1):12-21. PubMed ID: 12522155
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel theoretical framework for the dynamic stability analysis, movement control, and trajectory generation in a multisegment biomechanical model.
    Iqbal K; Roy A
    J Biomech Eng; 2009 Jan; 131(1):011002. PubMed ID: 19045918
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Reflex circuits of the spinal cord in man. Control during movement and their functional role (1)].
    Pierrot-Deseilligny E; Mazières L
    Rev Neurol (Paris); 1984; 140(11):605-14. PubMed ID: 6239356
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rhythmic arm cycling modulates Hoffmann reflex excitability differentially in the ankle flexor and extensor muscles.
    Dragert K; Zehr EP
    Neurosci Lett; 2009 Feb; 450(3):235-8. PubMed ID: 19028550
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-frequency conditioning electrical stimulation evokes supraspinal independent long-term depression but not long-term potentiation of the spinal withdrawal reflex in rats.
    You HJ; Tjølsen A; Arendt-Nielsen L
    Brain Res; 2006 May; 1090(1):116-22. PubMed ID: 16638604
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Forelimb movements and muscle responses evoked by microstimulation of cervical spinal cord in sedated monkeys.
    Moritz CT; Lucas TH; Perlmutter SI; Fetz EE
    J Neurophysiol; 2007 Jan; 97(1):110-20. PubMed ID: 16971685
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Spinal neural mechanisms in voluntary movements].
    Shindo M
    Rinsho Shinkeigaku; 1995 Dec; 35(12):1509-11. PubMed ID: 8752447
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Muscle cocontraction following dynamics learning.
    Darainy M; Ostry DJ
    Exp Brain Res; 2008 Sep; 190(2):153-63. PubMed ID: 18584164
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MODEM: a multi-agent hierarchical structure to model the human motor control system.
    Emadi Andani M; Bahrami F; Jabehdar Maralani P; Ijspeert AJ
    Biol Cybern; 2009 Dec; 101(5-6):361-77. PubMed ID: 19862548
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neuroprosthetics of the upper extremity--clinical application in spinal cord injury and future perspectives.
    Rupp R; Gerner HJ
    Biomed Tech (Berl); 2004 Apr; 49(4):93-8. PubMed ID: 15171589
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.