BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

40 related articles for article (PubMed ID: 2186820)

  • 1. Effects of parenteral recombinant human macrophage colony-stimulating factor on monocyte number, phenotype, and antitumor cytotoxicity in nonhuman primates.
    Munn DH; Garnick MB; Cheung NK
    Blood; 1990 May; 75(10):2042-8. PubMed ID: 2186820
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Granulocyte-monocyte-colony-stimulating factor augments the cytotoxic capacity of lymphocytes and monocytes in antibody-dependent cellular cytotoxicity.
    Masucci G; Wersäll P; Ragnhammar P; Mellstedt H
    Cancer Immunol Immunother; 1989; 29(4):288-92. PubMed ID: 2665935
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cytotoxic functions of blood mononuclear cells in patients with colorectal carcinoma treated with mAb 17-1A and granulocyte/macrophage-colony-stimulating factor.
    Ragnhammar P; Masucci G; Frödin JE; Hjelm AL; Mellstedt H
    Cancer Immunol Immunother; 1992; 35(3):158-64. PubMed ID: 1638551
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Antimetastatic effect of recombinant human macrophage-colony-stimulating factor against lung and liver metastatic B16 melanoma.
    Sakurai T; Yamada M; Simamura S; Motoyoshi K
    Cancer Immunol Immunother; 1997 Mar; 44(1):48-54. PubMed ID: 9111584
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Antibody-independent phagocytosis of tumor cells by human monocyte-derived macrophages cultured in recombinant macrophage colony-stimulating factor.
    Munn DH; Cheung NK
    Cancer Immunol Immunother; 1995 Jul; 41(1):46-52. PubMed ID: 7641219
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Macrophage colony-stimulating factor enhances rituximab-dependent cellular cytotoxicity by monocytes.
    Shimadoi S; Takami A; Kondo Y; Okumura H; Nakao S
    Cancer Sci; 2007 Sep; 98(9):1368-72. PubMed ID: 17640305
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Autoimmune Pulmonary Alveolar Proteinosis.
    McCarthy C; Carey BC; Trapnell BC
    Am J Respir Crit Care Med; 2022 May; 205(9):1016-1035. PubMed ID: 35227171
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hemogram study of an artificially feeding tree shrew (Tupaia belangeri chinensis).
    Feng Y; Xia W; Ji K; Lai Y; Feng Q; Chen H; Huang Z; Yi X; Tang A
    Exp Anim; 2020 Jan; 69(1):80-91. PubMed ID: 31527336
    [TBL] [Abstract][Full Text] [Related]  

  • 9. M-CSF improves protection against bacterial and fungal infections after hematopoietic stem/progenitor cell transplantation.
    Kandalla PK; Sarrazin S; Molawi K; Berruyer C; Redelberger D; Favel A; Bordi C; de Bentzmann S; Sieweke MH
    J Exp Med; 2016 Oct; 213(11):2269-2279. PubMed ID: 27811055
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Anti-GD2 mAbs and next-generation mAb-based agents for cancer therapy.
    Perez Horta Z; Goldberg JL; Sondel PM
    Immunotherapy; 2016 Sep; 8(9):1097-117. PubMed ID: 27485082
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interactions between colon cancer cells and tumor-infiltrated macrophages depending on cancer cell-derived colony stimulating factor 1.
    Wang H; Shao Q; Sun J; Ma C; Gao W; Wang Q; Zhao L; Qu X
    Oncoimmunology; 2016 Apr; 5(4):e1122157. PubMed ID: 27141406
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterisation of a novel Fc conjugate of macrophage colony-stimulating factor.
    Gow DJ; Sauter KA; Pridans C; Moffat L; Sehgal A; Stutchfield BM; Raza S; Beard PM; Tsai YT; Bainbridge G; Boner PL; Fici G; Garcia-Tapia D; Martin RA; Oliphant T; Shelly JA; Tiwari R; Wilson TL; Smith LB; Mabbott NA; Hume DA
    Mol Ther; 2014 Sep; 22(9):1580-92. PubMed ID: 24962162
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Treatment of high-risk neuroblastoma with anti-GD2 antibodies.
    Castel V; Segura V; Cañete A
    Clin Transl Oncol; 2010 Dec; 12(12):788-93. PubMed ID: 21156409
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anti-GD2 antibody therapy for GD2-expressing tumors.
    Navid F; Santana VM; Barfield RC
    Curr Cancer Drug Targets; 2010 Mar; 10(2):200-9. PubMed ID: 20201786
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Immune therapies for neuroblastoma.
    Navid F; Armstrong M; Barfield RC
    Cancer Biol Ther; 2009 May; 8(10):874-82. PubMed ID: 19342881
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CD163/CD16 coexpression by circulating monocytes/macrophages in HIV: potential biomarkers for HIV infection and AIDS progression.
    Fischer-Smith T; Tedaldi EM; Rappaport J
    AIDS Res Hum Retroviruses; 2008 Mar; 24(3):417-21. PubMed ID: 18373432
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Induced expression and association of the Mona/Gads adapter and Gab3 scaffolding protein during monocyte/macrophage differentiation.
    Bourgin C; Bourette RP; Arnaud S; Liu Y; Rohrschneider LR; Mouchiroud G
    Mol Cell Biol; 2002 Jun; 22(11):3744-56. PubMed ID: 11997510
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Expansion of CD14+CD16+ monocytes in critically ill cardiac surgery patients.
    Fingerle-Rowson G; Auers J; Kreuzer E; Fraunberger P; Blumenstein M; Ziegler-Heitbrock LH
    Inflammation; 1998 Aug; 22(4):367-79. PubMed ID: 9675608
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Selective depletion of CD14+ CD16+ monocytes by glucocorticoid therapy.
    Fingerle-Rowson G; Angstwurm M; Andreesen R; Ziegler-Heitbrock HW
    Clin Exp Immunol; 1998 Jun; 112(3):501-6. PubMed ID: 9649222
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Colony-stimulating factor 1 in the human response to neonatal listeriosis.
    Grieg A; Roth P
    Infect Immun; 1995 Apr; 63(4):1595-7. PubMed ID: 7890428
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 2.