These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 21868375)

  • 1. Self-catalyzed site-specific depurination of G residues mediated by cruciform extrusion in closed circular DNA plasmids.
    Amosova O; Kumar V; Deutsch A; Fresco JR
    J Biol Chem; 2011 Oct; 286(42):36322-30. PubMed ID: 21868375
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Self-catalyzed site-specific depurination of guanine residues within gene sequences.
    Amosova O; Coulter R; Fresco JR
    Proc Natl Acad Sci U S A; 2006 Mar; 103(12):4392-7. PubMed ID: 16537362
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Site-Specific Self-Catalyzed DNA Depurination: A Biological Mechanism That Leads to Mutations and Creates Sequence Diversity.
    Fresco JR; Amosova O
    Annu Rev Biochem; 2017 Jun; 86():461-484. PubMed ID: 28654322
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Why the DNA self-depurination mechanism operates in HB-β but not in β-globin paralogs HB-δ, HB-ɛ1, HB-γ1 and HB-γ2.
    Amosova O; Alvarez-Dominguez JR; Fresco JR
    Mutat Res; 2015 Aug; 778():11-7. PubMed ID: 26042536
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The consensus sequence for self-catalyzed site-specific G residue depurination in DNA.
    Amosova O; Smith A; Fresco JR
    J Biol Chem; 2011 Oct; 286(42):36316-21. PubMed ID: 21868376
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Conformational isomerization of the Holliday junction associated with a cruciform during branch migration in supercoiled plasmid DNA.
    Dickie P; Morgan AR; McFadden G
    J Mol Biol; 1988 May; 201(1):19-30. PubMed ID: 3418696
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DNA transitions induced by binding of PARP-1 to cruciform structures in supercoiled plasmids.
    Chasovskikh S; Dimtchev A; Smulson M; Dritschilo A
    Cytometry A; 2005 Nov; 68(1):21-7. PubMed ID: 16200639
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of the binding specificity of two anticruciform DNA monoclonal antibodies.
    Frappier L; Price GB; Martin RG; Zannis-Hadjopoulos M
    J Biol Chem; 1989 Jan; 264(1):334-41. PubMed ID: 2462559
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The physical chemistry of cruciform structures in supercoiled DNA molecules.
    Lilley DM; Gough GW; Hallam LR; Sullivan KM
    Biochimie; 1985; 67(7-8):697-706. PubMed ID: 3002491
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A native cruciform DNA structure probed in bacteria by recombinant T7 endonuclease.
    Panayotatos N; Fontaine A
    J Biol Chem; 1987 Aug; 262(23):11364-8. PubMed ID: 3038915
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cruciform-resolvase interactions in supercoiled DNA.
    Lilley DM; Kemper B
    Cell; 1984 Feb; 36(2):413-22. PubMed ID: 6319022
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sequence-selective depurination, DNA interstrand cross-linking and DNA strand break formation associated with alkylated DNA.
    Prakash AS; Gibson NW
    Carcinogenesis; 1992 Mar; 13(3):425-31. PubMed ID: 1547533
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Why is the initiation nick site of an AT-rich rolling circle plasmid at the tip of a GC-rich cruciform?
    Jin R; Fernandez-Beros ME; Novick RP
    EMBO J; 1997 Jul; 16(14):4456-66. PubMed ID: 9250690
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cruciform extrusion in plasmids bearing the replicative intermediate configuration of a poxvirus telomere.
    Dickie P; Morgan AR; McFadden G
    J Mol Biol; 1987 Aug; 196(3):541-58. PubMed ID: 2824785
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Large-scale stable opening of supercoiled DNA in response to temperature and supercoiling in (A + T)-rich regions that promote low-salt cruciform extrusion.
    Bowater R; Aboul-ela F; Lilley DM
    Biochemistry; 1991 Dec; 30(49):11495-506. PubMed ID: 1747368
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Slow cruciform transitions in palindromic DNA.
    Gellert M; O'Dea MH; Mizuuchi K
    Proc Natl Acad Sci U S A; 1983 Sep; 80(18):5545-9. PubMed ID: 6577442
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Length-dependent cruciform extrusion in d(GTAC)n sequences.
    Naylor LH; Yee HA; van de Sande JH
    J Biomol Struct Dyn; 1988 Feb; 5(4):895-912. PubMed ID: 3271495
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of degradation pathways for plasmid DNA in pharmaceutical formulations via accelerated stability studies.
    Evans RK; Xu Z; Bohannon KE; Wang B; Bruner MW; Volkin DB
    J Pharm Sci; 2000 Jan; 89(1):76-87. PubMed ID: 10664540
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Real-time detection of cruciform extrusion by single-molecule DNA nanomanipulation.
    Ramreddy T; Sachidanandam R; Strick TR
    Nucleic Acids Res; 2011 May; 39(10):4275-83. PubMed ID: 21266478
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preferential localization of DNA damage induced by depurination and bleomycin in a plasmid containing a scaffold-associated region.
    Legault J; Tremblay A; Mirault ME
    Biochem Cell Biol; 1997; 75(4):369-75. PubMed ID: 9493959
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.