BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 21868607)

  • 21. Predicting mutational routes to new adaptive phenotypes.
    Lind PA; Libby E; Herzog J; Rainey PB
    Elife; 2019 Jan; 8():. PubMed ID: 30616716
    [TBL] [Abstract][Full Text] [Related]  

  • 22. No apparent costs for facultative antibiotic production by the soil bacterium Pseudomonas fluorescens Pf0-1.
    Garbeva P; Tyc O; Remus-Emsermann MN; van der Wal A; Vos M; Silby M; de Boer W
    PLoS One; 2011; 6(11):e27266. PubMed ID: 22110622
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Hidden randomness between fitness landscapes limits reverse evolution.
    Tan L; Serene S; Chao HX; Gore J
    Phys Rev Lett; 2011 May; 106(19):198102. PubMed ID: 21668204
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Coevolution with bacteriophages drives genome-wide host evolution and constrains the acquisition of abiotic-beneficial mutations.
    Scanlan PD; Hall AR; Blackshields G; Friman VP; Davis MR; Goldberg JB; Buckling A
    Mol Biol Evol; 2015 Jun; 32(6):1425-35. PubMed ID: 25681383
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Adaptive divergence in experimental populations of Pseudomonas fluorescens. V. Insight into the niche specialist fuzzy spreader compels revision of the model Pseudomonas radiation.
    Ferguson GC; Bertels F; Rainey PB
    Genetics; 2013 Dec; 195(4):1319-35. PubMed ID: 24077305
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Local adaptation of a bacterium is as important as its presence in structuring a natural microbial community.
    Gómez P; Paterson S; De Meester L; Liu X; Lenzi L; Sharma MD; McElroy K; Buckling A
    Nat Commun; 2016 Aug; 7():12453. PubMed ID: 27501868
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Increased fitness of Pseudomonas fluorescens Pf0-1 leucine auxotrophs in soil.
    Kim W; Levy SB
    Appl Environ Microbiol; 2008 Jun; 74(12):3644-51. PubMed ID: 18441116
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The distribution of fitness effects among beneficial mutations in Fisher's geometric model of adaptation.
    Orr HA
    J Theor Biol; 2006 Jan; 238(2):279-85. PubMed ID: 15990119
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Construction and validation of a neutrally-marked strain of Pseudomonas fluorescens SBW25.
    Zhang XX; Rainey PB
    J Microbiol Methods; 2007 Oct; 71(1):78-81. PubMed ID: 17669526
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Exploiting the Adaptation Dynamics to Predict the Distribution of Beneficial Fitness Effects.
    John S; Seetharaman S
    PLoS One; 2016; 11(3):e0151795. PubMed ID: 26990188
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Dynamics of bacterial adaptation.
    Lai HY; Cooper TF
    Biochem Soc Trans; 2021 Apr; 49(2):945-951. PubMed ID: 33843990
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Survival of rifampin-resistant mutants of Pseudomonas fluorescens and Pseudomonas putida in soil systems.
    Compeau G; Al-Achi BJ; Platsouka E; Levy SB
    Appl Environ Microbiol; 1988 Oct; 54(10):2432-8. PubMed ID: 3144244
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Pervasive genotype-by-environment interactions shape the fitness effects of antibiotic resistance mutations.
    Soley JK; Jago M; Walsh CJ; Khomarbaghi Z; Howden BP; Lagator M
    Proc Biol Sci; 2023 Aug; 290(2005):20231030. PubMed ID: 37583318
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Distribution of fixed beneficial mutations and the rate of adaptation in asexual populations.
    Good BH; Rouzine IM; Balick DJ; Hallatschek O; Desai MM
    Proc Natl Acad Sci U S A; 2012 Mar; 109(13):4950-5. PubMed ID: 22371564
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Spatial structure of ecological opportunity drives adaptation in a bacterium.
    Bailey SF; Kassen R
    Am Nat; 2012 Aug; 180(2):270-83. PubMed ID: 22766936
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The distribution of fitness effects during adaptive walks using a simple genetic network.
    O'Brien NLV; Holland B; Engelstädter J; Ortiz-Barrientos D
    PLoS Genet; 2024 May; 20(5):e1011289. PubMed ID: 38787919
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Evolutionary convergence in experimental Pseudomonas populations.
    Lind PA; Farr AD; Rainey PB
    ISME J; 2017 Mar; 11(3):589-600. PubMed ID: 27911438
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The cost of multiple drug resistance in Pseudomonas aeruginosa.
    Ward H; Perron GG; Maclean RC
    J Evol Biol; 2009 May; 22(5):997-1003. PubMed ID: 19298493
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effects of Genetic and Physiological Divergence on the Evolution of a Sulfate-Reducing Bacterium under Conditions of Elevated Temperature.
    Kempher ML; Tao X; Song R; Wu B; Stahl DA; Wall JD; Arkin AP; Zhou A; Zhou J
    mBio; 2020 Aug; 11(4):. PubMed ID: 32817099
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Experimental evolution of Pseudomonas fluorescens in simple and complex environments.
    Barrett RD; MacLean RC; Bell G
    Am Nat; 2005 Oct; 166(4):470-80. PubMed ID: 16224703
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.