These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
96 related articles for article (PubMed ID: 21868951)
1. Image approximation by variable knot bicubic splines. McCaughey DG; Andrews HC IEEE Trans Pattern Anal Mach Intell; 1981 Mar; 3(3):299-310. PubMed ID: 21868951 [TBL] [Abstract][Full Text] [Related]
2. Optimized knot placement for B-splines in deformable image registration. Jacobson TJ; Murphy MJ Med Phys; 2011 Aug; 38(8):4579-82. PubMed ID: 21928630 [TBL] [Abstract][Full Text] [Related]
3. Bilinear and bicubic interpolation methods for division of focal plane polarimeters. Gao S; Gruev V Opt Express; 2011 Dec; 19(27):26161-73. PubMed ID: 22274203 [TBL] [Abstract][Full Text] [Related]
4. Hex-splines: a novel spline family for hexagonal lattices. Van De Ville D; Blu T; Unser M; Philips W; Lemahieu I; Van de Walle R IEEE Trans Image Process; 2004 Jun; 13(6):758-72. PubMed ID: 15648867 [TBL] [Abstract][Full Text] [Related]
5. Signal processing techniques for CCD image sensors. Lee WH Appl Opt; 1984 Dec; 23(23):4280-4. PubMed ID: 18213309 [TBL] [Abstract][Full Text] [Related]
6. Free knot splines for logistic models and threshold selection. Bessaoud F; Daures JP; Molinari N Comput Methods Programs Biomed; 2005 Jan; 77(1):1-9. PubMed ID: 15639705 [TBL] [Abstract][Full Text] [Related]
7. Greedy knot selection algorithm for restricted cubic spline regression. Arnes JI; Hapfelmeier A; Horsch A; Braaten T Front Epidemiol; 2023; 3():1283705. PubMed ID: 38455941 [TBL] [Abstract][Full Text] [Related]
8. Residual interpolation for division of focal plane polarization image sensors. Ahmed A; Zhao X; Gruev V; Zhang J; Bermak A Opt Express; 2017 May; 25(9):10651-10662. PubMed ID: 28468436 [TBL] [Abstract][Full Text] [Related]
9. Camera virtual equivalent model 0.01 pixel detectors. Peuchot B Comput Med Imaging Graph; 1993; 17(4-5):289-94. PubMed ID: 8306300 [TBL] [Abstract][Full Text] [Related]
10. Knot Optimization for Biharmonic B-splines on Manifold Triangle Meshes. Hou F; He Y; Qin H; Hao A IEEE Trans Vis Comput Graph; 2017 Sep; 23(9):2082-2095. PubMed ID: 27608469 [TBL] [Abstract][Full Text] [Related]
11. Support and approximation properties of Hermite splines. Fageot J; Aziznejad S; Unser M; Uhlmann V J Comput Appl Math; 2020 Apr; 368():112503. PubMed ID: 32255895 [TBL] [Abstract][Full Text] [Related]
12. Reconstruction of nonuniformly sampled images in spline spaces. Vázquez C; Dubois E; Konrad J IEEE Trans Image Process; 2005 Jun; 14(6):713-25. PubMed ID: 15971771 [TBL] [Abstract][Full Text] [Related]
13. Discretization of the radon transform and of its inverse by spline convolutions. Horbelt S; Liebling M; Unser M IEEE Trans Med Imaging; 2002 Apr; 21(4):363-76. PubMed ID: 12022624 [TBL] [Abstract][Full Text] [Related]
14. A direct method to solve optimal knots of B-spline curves: An application for non-uniform B-spline curves fitting. Dung VT; Tjahjowidodo T PLoS One; 2017; 12(3):e0173857. PubMed ID: 28319131 [TBL] [Abstract][Full Text] [Related]
15. Enlargement or reduction of digital images with minimum loss of information. Unser M; Aldroubi A; Eden M IEEE Trans Image Process; 1995; 4(3):247-58. PubMed ID: 18289976 [TBL] [Abstract][Full Text] [Related]
16. A box spline calculus for the discretization of computed tomography reconstruction problems. Entezari A; Nilchian M; Unser M IEEE Trans Med Imaging; 2012 Aug; 31(8):1532-41. PubMed ID: 22453611 [TBL] [Abstract][Full Text] [Related]
17. Enhancing the prediction accuracy of bovine lameness models through transformations of limb movement variables. Liu J; Neerchal NK; Tasch U; Dyer RM; Rajkondawar PG J Dairy Sci; 2009 Jun; 92(6):2539-50. PubMed ID: 19447986 [TBL] [Abstract][Full Text] [Related]