These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 2186926)

  • 1. A nucleotide sequence in the translation start signal region is involved in heat shock-induced translation arrest in Escherichia coli.
    Kuriki Y
    FEBS Lett; 1990 May; 264(1):121-4. PubMed ID: 2186926
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The translation start signal region of TEM beta-lactamase mRNA is responsible for heat shock-induced repression of amp gene expression in Escherichia coli.
    Kuriki Y
    J Bacteriol; 1989 Oct; 171(10):5452-7. PubMed ID: 2507525
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Translational repression of TEM beta-lactamase synthesis as a response of Escherichia coli to heat shock.
    Kuriki Y
    Mol Microbiol; 1989 Aug; 3(8):1131-40. PubMed ID: 2691842
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interplay of two cis-acting mRNA regions in translational control of sigma 32 synthesis during the heat shock response of Escherichia coli.
    Nagai H; Yuzawa H; Yura T
    Proc Natl Acad Sci U S A; 1991 Dec; 88(23):10515-9. PubMed ID: 1961716
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ClpB is the Escherichia coli heat shock protein F84.1.
    Squires CL; Pedersen S; Ross BM; Squires C
    J Bacteriol; 1991 Jul; 173(14):4254-62. PubMed ID: 2066329
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Expression of ClpB, an analog of the ATP-dependent protease regulatory subunit in Escherichia coli, is controlled by a heat shock sigma factor (sigma 32).
    Kitagawa M; Wada C; Yoshioka S; Yura T
    J Bacteriol; 1991 Jul; 173(14):4247-53. PubMed ID: 1906060
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Promoters of major Escherichia coli heat shock genes seem non-functional in Bacillus subtilis.
    Wetzstein M; Schumann W
    FEMS Microbiol Lett; 1990 Oct; 60(1-2):55-8. PubMed ID: 2126519
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamic interplay between antagonistic pathways controlling the sigma 32 level in Escherichia coli.
    Morita MT; Kanemori M; Yanagi H; Yura T
    Proc Natl Acad Sci U S A; 2000 May; 97(11):5860-5. PubMed ID: 10801971
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Heat shock response of murine Chlamydia trachomatis.
    Engel JN; Pollack J; Perara E; Ganem D
    J Bacteriol; 1990 Dec; 172(12):6959-72. PubMed ID: 2254267
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A distinct segment of the sigma 32 polypeptide is involved in DnaK-mediated negative control of the heat shock response in Escherichia coli.
    Nagai H; Yuzawa H; Kanemori M; Yura T
    Proc Natl Acad Sci U S A; 1994 Oct; 91(22):10280-4. PubMed ID: 7937941
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Expression of ToxR, the transcriptional activator of the virulence factors in Vibrio cholerae, is modulated by the heat shock response.
    Parsot C; Mekalanos JJ
    Proc Natl Acad Sci U S A; 1990 Dec; 87(24):9898-902. PubMed ID: 2124707
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Heat induction of sigma 32 synthesis mediated by mRNA secondary structure: a primary step of the heat shock response in Escherichia coli.
    Yuzawa H; Nagai H; Mori H; Yura T
    Nucleic Acids Res; 1993 Nov; 21(23):5449-55. PubMed ID: 7505426
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Temperature-sensitive amber suppression of ompF'-'lacZ fused gene expression in a supE mutant of Escherichia coli K12.
    Kuriki Y
    FEMS Microbiol Lett; 1993 Feb; 107(1):71-6. PubMed ID: 8468002
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Isolation, characterization, and sequence of an Escherichia coli heat shock gene, htpX.
    Kornitzer D; Teff D; Altuvia S; Oppenheim AB
    J Bacteriol; 1991 May; 173(9):2944-53. PubMed ID: 1826904
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cloning, expression, and characterization of the lon gene of Erwinia amylovora: evidence for a heat shock response.
    Eastgate JA; Taylor N; Coleman MJ; Healy B; Thompson L; Roberts IS
    J Bacteriol; 1995 Feb; 177(4):932-7. PubMed ID: 7860603
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Expression of the Caulobacter heat shock gene dnaK is developmentally controlled during growth at normal temperatures.
    Gomes SL; Gober JW; Shapiro L
    J Bacteriol; 1990 Jun; 172(6):3051-9. PubMed ID: 2345134
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Selective translation of heat shock mRNA in Drosophila melanogaster depends on sequence information in the leader.
    Klemenz R; Hultmark D; Gehring WJ
    EMBO J; 1985 Aug; 4(8):2053-60. PubMed ID: 2933251
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Genetic regulation of the heat-shock response in Escherichia coli].
    Ramírez Santos J; Solís Guzmán G; Gómez Eichelmann MC
    Rev Latinoam Microbiol; 2001; 43(1):51-63. PubMed ID: 17061571
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The essential Escherichia coli msgB gene, a multicopy suppressor of a temperature-sensitive allele of the heat shock gene grpE, is identical to dapE.
    Wu B; Georgopoulos C; Ang D
    J Bacteriol; 1992 Aug; 174(16):5258-64. PubMed ID: 1644751
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Abnormal induction of heat shock proteins in an Escherichia coli mutant deficient in adenosylmethionine synthetase activity.
    Matthews RG; Neidhardt FC
    J Bacteriol; 1988 Apr; 170(4):1582-8. PubMed ID: 3280549
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.