These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
148 related articles for article (PubMed ID: 21869461)
1. Transparent Raman-enhancing substrates for microbiological monitoring and in situ pollutant detection. Wang HH; Cheng TY; Sharma P; Chiang FY; Chiu SW; Wang JK; Wang YL Nanotechnology; 2011 Sep; 22(38):385702. PubMed ID: 21869461 [TBL] [Abstract][Full Text] [Related]
2. Silver nanocrystal-modified silicon nanowires as substrates for surface-enhanced Raman and hyper-Raman scattering. Leng W; Yasseri AA; Sharma S; Li Z; Woo HY; Vak D; Bazan GC; Kelley AM Anal Chem; 2006 Sep; 78(17):6279-82. PubMed ID: 16944914 [TBL] [Abstract][Full Text] [Related]
3. Label free sub-picomole level DNA detection with Ag nanoparticle decorated Au nanotip arrays as surface enhanced Raman spectroscopy platform. Lo HC; Hsiung HI; Chattopadhyay S; Han HC; Chen CF; Leu JP; Chen KH; Chen LC Biosens Bioelectron; 2011 Jan; 26(5):2413-8. PubMed ID: 21044833 [TBL] [Abstract][Full Text] [Related]
4. Surface-enhanced Raman activity and stability study of silver films prepared by reduction of Ag+ ions in N,N-dimethylformamide. Jia H; Zeng J; An J; Xu W; Zhao B J Colloid Interface Sci; 2005 Dec; 292(2):455-61. PubMed ID: 16061242 [TBL] [Abstract][Full Text] [Related]
5. Ag nanoparticles prepared by laser photoreduction as substrates for in situ surface-enhanced Raman scattering analysis of dyes. Cañamares MV; Garcia-Ramos JV; Gómez-Varga JD; Domingo C; Sanchez-Cortes S Langmuir; 2007 Apr; 23(9):5210-5. PubMed ID: 17381143 [TBL] [Abstract][Full Text] [Related]
6. Active control of silver nanoparticles spacing using dielectrophoresis for surface-enhanced Raman scattering. Chrimes AF; Khoshmanesh K; Stoddart PR; Kayani AA; Mitchell A; Daima H; Bansal V; Kalantar-zadeh K Anal Chem; 2012 May; 84(9):4029-35. PubMed ID: 22468827 [TBL] [Abstract][Full Text] [Related]
7. Surface-enhanced Raman scattering (SERS) optrodes for multiplexed on-chip sensing of nile blue A and oxazine 720. Fan M; Wang P; Escobedo C; Sinton D; Brolo AG Lab Chip; 2012 Apr; 12(8):1554-60. PubMed ID: 22398836 [TBL] [Abstract][Full Text] [Related]
8. Effect of oxidation on surface-enhanced Raman scattering activity of silver nanoparticles: a quantitative correlation. Han Y; Lupitskyy R; Chou TM; Stafford CM; Du H; Sukhishvili S Anal Chem; 2011 Aug; 83(15):5873-80. PubMed ID: 21644591 [TBL] [Abstract][Full Text] [Related]
9. Simultaneous capture, detection, and inactivation of bacteria as enabled by a surface-enhanced Raman scattering multifunctional chip. Wang H; Zhou Y; Jiang X; Sun B; Zhu Y; Wang H; Su Y; He Y Angew Chem Int Ed Engl; 2015 Apr; 54(17):5132-6. PubMed ID: 25820791 [TBL] [Abstract][Full Text] [Related]
10. Surface-enhanced Raman detection of melamine on silver-nanoparticle-decorated silver/carbon nanospheres: effect of metal ions. Chen LM; Liu YN ACS Appl Mater Interfaces; 2011 Aug; 3(8):3091-6. PubMed ID: 21744828 [TBL] [Abstract][Full Text] [Related]
11. Substrates with discretely immobilized silver nanoparticles for ultrasensitive detection of anions in water using surface-enhanced Raman scattering. Tan S; Erol M; Sukhishvili S; Du H Langmuir; 2008 May; 24(9):4765-71. PubMed ID: 18376892 [TBL] [Abstract][Full Text] [Related]
12. Multilayer silver nanoparticles-modified optical fiber tip for high performance SERS remote sensing. Andrade GF; Fan M; Brolo AG Biosens Bioelectron; 2010 Jun; 25(10):2270-5. PubMed ID: 20353887 [TBL] [Abstract][Full Text] [Related]
13. Multiplex optical sensing with surface-enhanced Raman scattering: a critical review. Rodriguez-Lorenzo L; Fabris L; Alvarez-Puebla RA Anal Chim Acta; 2012 Oct; 745():10-23. PubMed ID: 22938601 [TBL] [Abstract][Full Text] [Related]
14. Characterization of the surface enhanced raman scattering (SERS) of bacteria. Premasiri WR; Moir DT; Klempner MS; Krieger N; Jones G; Ziegler LD J Phys Chem B; 2005 Jan; 109(1):312-20. PubMed ID: 16851017 [TBL] [Abstract][Full Text] [Related]
15. An investigation of the surface enhanced Raman scattering (SERS) from a new substrate of silver-modified silver electrode by magnetron sputtering. Li J; Fang Y Spectrochim Acta A Mol Biomol Spectrosc; 2007 Apr; 66(4-5):994-1000. PubMed ID: 16875867 [TBL] [Abstract][Full Text] [Related]
16. Fabrication and SERS properties of Ag/Cu2S composite micro-nanostructures over Cu foil. Song W; Wang J; Mao Z; Xu W; Zhao B Spectrochim Acta A Mol Biomol Spectrosc; 2011 Sep; 79(5):1247-50. PubMed ID: 21571583 [TBL] [Abstract][Full Text] [Related]
18. Silver dendrites from galvanic displacement on commercial aluminum foil as an effective SERS substrate. Gutés A; Carraro C; Maboudian R J Am Chem Soc; 2010 Feb; 132(5):1476-7. PubMed ID: 20073460 [TBL] [Abstract][Full Text] [Related]
19. Reproducible surface-enhanced Raman scattering spectra of bacteria on aggregated silver nanoparticles. Kahraman M; Yazici MM; Sahin F; Bayrak OF; Culha M Appl Spectrosc; 2007 May; 61(5):479-85. PubMed ID: 17555616 [TBL] [Abstract][Full Text] [Related]
20. Surface-enhanced Raman scattering spectroscopy as a sensitive and selective technique for the detection of folic acid in water and human serum. Stokes RJ; McBride E; Wilson CG; Girkin JM; Smith WE; Graham D Appl Spectrosc; 2008 Apr; 62(4):371-6. PubMed ID: 18416893 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]