These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 21869462)

  • 41. High-quality ultralong Bi2S3 nanowires: structure, growth, and properties.
    Yu Y; Jin CH; Wang RH; Chen Q; Peng LM
    J Phys Chem B; 2005 Oct; 109(40):18772-6. PubMed ID: 16853415
    [TBL] [Abstract][Full Text] [Related]  

  • 42. High performance photodetectors of individual InSe single crystalline nanowire.
    Wang JJ; Cao FF; Jiang L; Guo YG; Hu WP; Wan LJ
    J Am Chem Soc; 2009 Nov; 131(43):15602-3. PubMed ID: 19824674
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Measurement of Nanowire Optical Modes Using Cross-Polarization Microscopy.
    Kakko JP; Matikainen A; Anttu N; Kujala S; Mäntynen H; Khayrudinov V; Autere A; Sun Z; Lipsanen H
    Sci Rep; 2017 Dec; 7(1):17790. PubMed ID: 29259279
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Cytotoxicity and cellular uptake of iron nanowires.
    Song MM; Song WJ; Bi H; Wang J; Wu WL; Sun J; Yu M
    Biomaterials; 2010 Mar; 31(7):1509-17. PubMed ID: 19945156
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Electrical conduction mechanisms in natively doped ZnO nanowires.
    Chiu SP; Lin YH; Lin JJ
    Nanotechnology; 2009 Jan; 20(1):015203. PubMed ID: 19417245
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Directional Growth of Ultralong CsPbBr
    Shoaib M; Zhang X; Wang X; Zhou H; Xu T; Wang X; Hu X; Liu H; Fan X; Zheng W; Yang T; Yang S; Zhang Q; Zhu X; Sun L; Pan A
    J Am Chem Soc; 2017 Nov; 139(44):15592-15595. PubMed ID: 29058888
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Synthesis, characterization, and optical properties of In2O3 semiconductor nanowires.
    Wang G; Park J; Wexler D; Park MS; Ahn JH
    Inorg Chem; 2007 Jun; 46(12):4778-80. PubMed ID: 17497852
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Integration of thin-film-fracture-based nanowires into microchip fabrication.
    Jebril S; Elbahri M; Titazu G; Subannajui K; Essa S; Niebelschütz F; Röhlig CC; Cimalla V; Ambacher O; Schmidt B; Kabiraj D; Avasti D; Adelung R
    Small; 2008 Dec; 4(12):2214-21. PubMed ID: 18972459
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Effective coupled optoelectrical design method for fully infiltrated semiconductor nanowires based hybrid solar cells.
    Wu D; Tang X; Wang K; Li X
    Opt Express; 2016 Oct; 24(22):A1336-A1348. PubMed ID: 27828520
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine.
    Jain PK; Huang X; El-Sayed IH; El-Sayed MA
    Acc Chem Res; 2008 Dec; 41(12):1578-86. PubMed ID: 18447366
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Mie-coupled bound guided states in nanowire geometric superlattices.
    Kim S; Kim KH; Hill DJ; Park HG; Cahoon JF
    Nat Commun; 2018 Jul; 9(1):2781. PubMed ID: 30018361
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Nanoparticle characterization by using tilted laser microscopy: back scattering measurement in near field.
    Brogioli D; Salerno D; Cassina V; Mantegazza F
    Opt Express; 2009 Aug; 17(18):15431-48. PubMed ID: 19724541
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Silicon nanowire optical waveguide (SNOW).
    Khorasaninejad M; Saini SS
    Opt Express; 2010 Oct; 18(22):23442-57. PubMed ID: 21164687
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Tuning the electrical transport properties of n-type CdS nanowires via Ga doping and their nano-optoelectronic applications.
    Cai J; Jie J; Jiang P; Wu D; Xie C; Wu C; Wang Z; Yu Y; Wang L; Zhang X; Peng Q; Jiang Y
    Phys Chem Chem Phys; 2011 Aug; 13(32):14663-7. PubMed ID: 21709907
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Growth of doped silicon nanowires by pulsed laser deposition and their analysis by electron beam induced current imaging.
    Eisenhawer B; Zhang D; Clavel R; Berger A; Michler J; Christiansen S
    Nanotechnology; 2011 Feb; 22(7):075706. PubMed ID: 21233539
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Investigation on the mechanism of nanodamage and nanofailure for single ZnO nanowires under an electric field.
    Li P; Liao Q; Zhang Z; Wang Z; Lin P; Zhang X; Kang Z; Huang Y; Gu Y; Yan X; Zhang Y
    ACS Appl Mater Interfaces; 2014 Feb; 6(4):2344-9. PubMed ID: 24467452
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Precise Determination of the Crystallographic Orientations in Single ZnS Nanowires by Second-Harmonic Generation Microscopy.
    Hu H; Wang K; Long H; Liu W; Wang B; Lu P
    Nano Lett; 2015 May; 15(5):3351-7. PubMed ID: 25867087
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Simulation of optical absorption in conical nanowires.
    Wilson DP; LaPierre RR
    Opt Express; 2021 Mar; 29(6):9544-9552. PubMed ID: 33820379
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Synthesis and alignment of silver nanorods and nanowires and the formation of Pt, Pd, and core/shell structures by galvanic exchange directly on surfaces.
    Sławiński GW; Zamborini FP
    Langmuir; 2007 Sep; 23(20):10357-65. PubMed ID: 17760472
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Nanocontact resistance and structural disorder induced resistivity variation in metallic metal-oxide nanowires.
    Lin YF; Wu ZY; Lin KC; Chen CC; Jian WB; Chen FR; Kai JJ
    Nanotechnology; 2009 Nov; 20(45):455401. PubMed ID: 19822926
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.