These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 21869567)

  • 1. Detection of spatial and temporal influences on bacterial communities in an urban stream by automated ribosomal intergenic ribosomal spacer analysis.
    Or A; Gophna U
    Microbes Environ; 2011; 26(4):360-6. PubMed ID: 21869567
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spatial and temporal heterogeneity of the bacterial communities in stream epilithic biofilms.
    Lear G; Anderson MJ; Smith JP; Boxen K; Lewis GD
    FEMS Microbiol Ecol; 2008 Sep; 65(3):463-73. PubMed ID: 18637965
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In situ transplant analysis of free-living bacteria in a lotic ecosystem.
    Or A; Comay O; Gophna U
    Res Microbiol; 2013 Apr; 164(3):262-9. PubMed ID: 23257177
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of two fingerprinting techniques, terminal restriction fragment length polymorphism and automated ribosomal intergenic spacer analysis, for determination of bacterial diversity in aquatic environments.
    Danovaro R; Luna GM; Dell'anno A; Pietrangeli B
    Appl Environ Microbiol; 2006 Sep; 72(9):5982-9. PubMed ID: 16957219
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A systematic assessment of automated ribosomal intergenic spacer analysis (ARISA) as a tool for estimating bacterial richness.
    Kovacs A; Yacoby K; Gophna U
    Res Microbiol; 2010 Apr; 161(3):192-7. PubMed ID: 20138144
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Geographic and environmental sources of variation in lake bacterial community composition.
    Yannarell AC; Triplett EW
    Appl Environ Microbiol; 2005 Jan; 71(1):227-39. PubMed ID: 15640192
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The carnivorous pale pitcher plant harbors diverse, distinct, and time-dependent bacterial communities.
    Koopman MM; Fuselier DM; Hird S; Carstens BC
    Appl Environ Microbiol; 2010 Mar; 76(6):1851-60. PubMed ID: 20097807
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Use of pyrosequencing to explore the benthic bacterial community structure in a river impacted by wastewater treatment plant discharges.
    Marti E; Balcázar JL
    Res Microbiol; 2014; 165(6):468-71. PubMed ID: 24732342
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sediment bacteria in an urban stream: Spatiotemporal patterns in community composition.
    Roberto AA; Van Gray JB; Leff LG
    Water Res; 2018 May; 134():353-369. PubMed ID: 29454907
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Restructuring of the Aquatic Bacterial Community by Hydric Dynamics Associated with Superstorm Sandy.
    Ulrich N; Rosenberger A; Brislawn C; Wright J; Kessler C; Toole D; Solomon C; Strutt S; McClure E; Lamendella R
    Appl Environ Microbiol; 2016 Jun; 82(12):3525-3536. PubMed ID: 27060115
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural diversity of bacterial communities in a heavy metal mineralized granite outcrop.
    Gleeson D; McDermott F; Clipson N
    Environ Microbiol; 2006 Mar; 8(3):383-93. PubMed ID: 16478445
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Richness and diversity of bacterioplankton species along an estuarine gradient in Moreton Bay, Australia.
    Hewson I; Fuhrman JA
    Appl Environ Microbiol; 2004 Jun; 70(6):3425-33. PubMed ID: 15184140
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spatial and temporal variability in epilithic biofilm bacterial communities along an upland river gradient.
    Anderson-Glenna MJ; Bakkestuen V; Clipson NJ
    FEMS Microbiol Ecol; 2008 Jun; 64(3):407-18. PubMed ID: 18397300
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biofilm bacterial community structure in streams affected by acid mine drainage.
    Lear G; Niyogi D; Harding J; Dong Y; Lewis G
    Appl Environ Microbiol; 2009 Jun; 75(11):3455-60. PubMed ID: 19363070
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Soil microbial community analysis using two-dimensional polyacrylamide gel electrophoresis of the bacterial ribosomal internal transcribed spacer regions.
    Jones CM; Thies JE
    J Microbiol Methods; 2007 May; 69(2):256-67. PubMed ID: 17343936
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The phylogeography of Adelie penguin faecal flora.
    Banks JC; Cary SC; Hogg ID
    Environ Microbiol; 2009 Mar; 11(3):577-88. PubMed ID: 19040454
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exploration of methods used to describe bacterial communities in silage of maize (Zea mays) cultivars.
    Brusetti L; Borin S; Rizzi A; Mora D; Sorlini C; Daffonchio D
    Environ Biosafety Res; 2008; 7(1):25-33. PubMed ID: 18384727
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of primer sets for use in automated ribosomal intergenic spacer analysis of aquatic bacterial communities: an ecological perspective.
    Jones SE; Shade AL; McMahon KD; Kent AD
    Appl Environ Microbiol; 2007 Jan; 73(2):659-62. PubMed ID: 17122397
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bacterial diversity in water samples from uranium wastes as demonstrated by 16S rDNA and ribosomal intergenic spacer amplification retrievals.
    Radeva G; Selenska-Pobell S
    Can J Microbiol; 2005 Nov; 51(11):910-23. PubMed ID: 16333330
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bacterial diversity and community structure in an aerated lagoon revealed by ribosomal intergenic spacer analyses and 16S ribosomal DNA sequencing.
    Yu Z; Mohn WW
    Appl Environ Microbiol; 2001 Apr; 67(4):1565-74. PubMed ID: 11282606
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.