These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 21869617)

  • 1. A comparative study of helical-type and traditional-type artery bypass grafts: numerical simulation.
    Wen J; Zheng T; Jiang W; Deng X; Fan Y
    ASAIO J; 2011; 57(5):399-406. PubMed ID: 21869617
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison between experimentally measured flow patterns for straight and helical type graft.
    Bernad SI; Bosioc A; Bernad ES; Craina ML
    Biomed Mater Eng; 2014; 24(1):853-60. PubMed ID: 24211972
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Influences of graft diameter on the blood flow in 2-way bypassing surgery].
    Qiao A; Liu Y; Zhang S
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2008 Apr; 25(2):346-50, 377. PubMed ID: 18610620
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intimal hyperplasia and hemodynamic factors in arterial bypass and arteriovenous grafts: a review.
    Haruguchi H; Teraoka S
    J Artif Organs; 2003; 6(4):227-35. PubMed ID: 14691664
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hemodynamic performance study on small diameter helical grafts.
    Zheng T; Fan Y; Xiong Y; Jiang W; Deng X
    ASAIO J; 2009; 55(3):192-9. PubMed ID: 19318918
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Wall shear stresses in small and large two-way bypass grafts.
    Qiao A; Liu Y; Guo Z
    Med Eng Phys; 2006 Apr; 28(3):251-8. PubMed ID: 16029954
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simulation of flow through a Miller cuff bypass graft.
    Henry FS; Küpper C; Lewington NP
    Comput Methods Biomech Biomed Engin; 2002 Jun; 5(3):207-17. PubMed ID: 12186713
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Helical type coronary bypass graft performance: Experimental investigations.
    Bernad SI; Bosioc AI; Bernad ES; Craina ML
    Biomed Mater Eng; 2015; 26 Suppl 1():S477-86. PubMed ID: 26406039
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A flow visualization study of an anatomic coronary artery anastomosis model with an implant.
    Anayiotos AS; Pedroso P; Advincula MA; Venugopalan R; Eleftheriou EC; Holman WL
    Technol Health Care; 2003; 11(1):21-39. PubMed ID: 12590156
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Numerical simulation of compliant artery bypass grafts using fluid-structure interaction framework.
    Wen J; Ding G; Jiang W; Wang Q; Zheng T
    ASAIO J; 2014; 60(5):533-40. PubMed ID: 24814837
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Numerical investigation of blood flow in the distal end of an axis-deviated arterial bypass model.
    Sun A; Fan Y; Deng X
    Biorheology; 2009; 46(2):83-92. PubMed ID: 19458412
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Numerical investigation of oxygen mass transfer in a helical-type artery bypass graft.
    Zheng T; Wen J; Jiang W; Deng X; Fan Y
    Comput Methods Biomech Biomed Engin; 2014 Apr; 17(5):549-59. PubMed ID: 22794110
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An S-type bypass can improve the hemodynamics in the bypassed arteries and suppress intimal hyperplasia along the host artery floor.
    Fan Y; Xu Z; Jiang W; Deng X; Wang K; Sun A
    J Biomech; 2008 Aug; 41(11):2498-505. PubMed ID: 18573497
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Validation of numerical simulation with PIV measurements for two anastomosis models.
    Zhang JM; Chua LP; Ghista DN; Zhou TM; Tan YS
    Med Eng Phys; 2008 Mar; 30(2):226-47. PubMed ID: 17466565
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of graft-host diameter ratio on the hemodynamics of CABG.
    Qiao A; Liu Y
    Biomed Mater Eng; 2006; 16(3):189-201. PubMed ID: 16518018
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Swirling flow pattern in a non-planar model of an interposition vein cuff anastomosis.
    How TV; Fisher RK; Brennan JA; Harris PL
    Med Eng Phys; 2006 Jan; 28(1):27-35. PubMed ID: 15921948
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A parametric numerical investigation on haemodynamics in distal coronary anastomoses.
    Xiong FL; Chong CK
    Med Eng Phys; 2008 Apr; 30(3):311-20. PubMed ID: 17616426
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Helical flow as fluid dynamic signature for atherogenesis risk in aortocoronary bypass. A numeric study.
    Morbiducci U; Ponzini R; Grigioni M; Redaelli A
    J Biomech; 2007; 40(3):519-34. PubMed ID: 16626721
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effects of graft geometry on the patency of a systemic-to-pulmonary shunt: a computational fluid dynamics study.
    Waniewski J; Kurowska W; Mizerski JK; Trykozko A; Nowiński K; Brzezińska-Rajszys G; Kościesza A
    Artif Organs; 2005 Aug; 29(8):642-50. PubMed ID: 16048481
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A computational exploration of helical arterio-venous graft designs.
    Van Canneyt K; Morbiducci U; Eloot S; De Santis G; Segers P; Verdonck P
    J Biomech; 2013 Jan; 46(2):345-53. PubMed ID: 23159095
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.