These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
200 related articles for article (PubMed ID: 21869983)
1. A 3D α-Fe2O3 nanoflake urchin-like structure for electromagnetic wave absorption. Yu HC; Hsu LC; Chang TH; Li YY Dalton Trans; 2012 Jan; 41(3):723-6. PubMed ID: 21869983 [TBL] [Abstract][Full Text] [Related]
2. Formation of three-dimensional urchin-like α-Fe₂O₃ structure and its field-emission application. Hsu LC; Yu HC; Chang TH; Li YY ACS Appl Mater Interfaces; 2011 Aug; 3(8):3084-90. PubMed ID: 21774492 [TBL] [Abstract][Full Text] [Related]
3. Enhanced microwave absorption of Fe nanoflakes after coating with SiO2 nanoshell. Yan L; Wang J; Han X; Ren Y; Liu Q; Li F Nanotechnology; 2010 Mar; 21(9):095708. PubMed ID: 20139492 [TBL] [Abstract][Full Text] [Related]
4. Coin-like α-Fe2O3@CoFe2O4 core-shell composites with excellent electromagnetic absorption performance. Lv H; Liang X; Cheng Y; Zhang H; Tang D; Zhang B; Ji G; Du Y ACS Appl Mater Interfaces; 2015 Mar; 7(8):4744-50. PubMed ID: 25664491 [TBL] [Abstract][Full Text] [Related]
5. A carbonyl iron/carbon fiber material for electromagnetic wave absorption. Youh MJ; Wu HC; Lin WH; Chiu SC; Huang CF; Yu HC; Hsu JS; Li YY J Nanosci Nanotechnol; 2011 Mar; 11(3):2315-20. PubMed ID: 21449387 [TBL] [Abstract][Full Text] [Related]
6. The enhanced microwave absorption property of CoFe(2)O(4) nanoparticles coated with a Co(3)Fe(7)-Co nanoshell by thermal reduction. Xi L; Wang Z; Zuo Y; Shi X Nanotechnology; 2011 Jan; 22(4):045707. PubMed ID: 21169659 [TBL] [Abstract][Full Text] [Related]
7. Quaternary nanocomposites consisting of graphene, Fe3O4@Fe core@shell, and ZnO nanoparticles: synthesis and excellent electromagnetic absorption properties. Ren YL; Wu HY; Lu MM; Chen YJ; Zhu CL; Gao P; Cao MS; Li CY; Ouyang QY ACS Appl Mater Interfaces; 2012 Dec; 4(12):6436-42. PubMed ID: 23176086 [TBL] [Abstract][Full Text] [Related]
8. Controllable synthesis of porous Fe3O4@ZnO sphere decorated graphene for extraordinary electromagnetic wave absorption. Sun D; Zou Q; Wang Y; Wang Y; Jiang W; Li F Nanoscale; 2014 Jun; 6(12):6557-62. PubMed ID: 24740171 [TBL] [Abstract][Full Text] [Related]
9. Microwave Absorption of α-Fe Zhang C; Wang D; Dong L; Li K; Zhang Y; Yang P; Yi S; Dai X; Yin C; Du Z; Zhang X; Zhou Q; Yi Z; Rao J; Zhang Y Int J Mol Sci; 2022 Aug; 23(16):. PubMed ID: 36012621 [TBL] [Abstract][Full Text] [Related]
10. Preparation and electromagnetic properties of core/shell polystyrene@polypyrrole@nickel composite microspheres. Li W; Qiu T; Wang L; Ren S; Zhang J; He L; Li X ACS Appl Mater Interfaces; 2013 Feb; 5(3):883-91. PubMed ID: 23277287 [TBL] [Abstract][Full Text] [Related]
11. Facile Synthesis of Novel Heterostructure Based on SnO2 Nanorods Grown on Submicron Ni Walnut with Tunable Electromagnetic Wave Absorption Capabilities. Zhao B; Fan B; Shao G; Zhao W; Zhang R ACS Appl Mater Interfaces; 2015 Aug; 7(33):18815-23. PubMed ID: 26259116 [TBL] [Abstract][Full Text] [Related]
12. A wormhole-like porous carbon/magnetic particles composite as an efficient broadband electromagnetic wave absorber. Fang J; Liu T; Chen Z; Wang Y; Wei W; Yue X; Jiang Z Nanoscale; 2016 Apr; 8(16):8899-909. PubMed ID: 27072200 [TBL] [Abstract][Full Text] [Related]
13. Coupling Hollow Fe3O4-Fe Nanoparticles with Graphene Sheets for High-Performance Electromagnetic Wave Absorbing Material. Qu B; Zhu C; Li C; Zhang X; Chen Y ACS Appl Mater Interfaces; 2016 Feb; 8(6):3730-5. PubMed ID: 26829291 [TBL] [Abstract][Full Text] [Related]
14. Synthesis of 3D flower-like Fe Luo J; Hu Y; Xiao L; Zhang G; Guo H; Hao G; Jiang W Nanotechnology; 2019 Nov; 31(8):085708. PubMed ID: 31675746 [TBL] [Abstract][Full Text] [Related]
15. Excellent microwave absorption performances of high length-diameter ratio iron nanowires with low filling ratio. Yang PA; Ruan H; Sun Y; Li R; Lu Y; Xiang C Nanotechnology; 2020 Sep; 31(39):395708. PubMed ID: 32544893 [TBL] [Abstract][Full Text] [Related]
16. Dependency of magnetic microwave absorption on surface architecture of Co20Ni80 hierarchical structures studied by electron holography. Liu Q; Xu X; Xia W; Che R; Chen C; Cao Q; He J Nanoscale; 2015 Feb; 7(5):1736-43. PubMed ID: 25515025 [TBL] [Abstract][Full Text] [Related]
17. Improved electromagnetic wave absorption of Co nanoparticles decorated carbon nanotubes derived from synergistic magnetic and dielectric losses. Wu N; Lv H; Liu J; Liu Y; Wang S; Liu W Phys Chem Chem Phys; 2016 Nov; 18(46):31542-31550. PubMed ID: 27831579 [TBL] [Abstract][Full Text] [Related]
18. Flexible SiC/Si Wang P; Cheng L; Zhang Y; Zhang L ACS Appl Mater Interfaces; 2017 Aug; 9(34):28844-28858. PubMed ID: 28799331 [TBL] [Abstract][Full Text] [Related]
19. Growth of Fe(3)O(4) nanorod arrays on graphene sheets for application in electromagnetic absorption fields. Zhang H; Zhu C; Chen Y; Gao H Chemphyschem; 2014 Aug; 15(11):2261-6. PubMed ID: 24827699 [TBL] [Abstract][Full Text] [Related]
20. MOF-Derived Porous Co/C Nanocomposites with Excellent Electromagnetic Wave Absorption Properties. Lü Y; Wang Y; Li H; Lin Y; Jiang Z; Xie Z; Kuang Q; Zheng L ACS Appl Mater Interfaces; 2015 Jun; 7(24):13604-11. PubMed ID: 26039802 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]