These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

82 related articles for article (PubMed ID: 21870012)

  • 1. Microfluidic platform for electrophysiological studies on Xenopus laevis oocytes under varying gravity levels.
    Schaffhauser DF; Andrini O; Ghezzi C; Forster IC; Franco-Obregón A; Egli M; Dittrich PS
    Lab Chip; 2011 Oct; 11(20):3471-8. PubMed ID: 21870012
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The transoocyte voltage clamp: a non-invasive technique for electrophysiological experiments with Xenopus laevis oocytes.
    Cucu D; Simaels J; Jans D; Van Driessche W
    Pflugers Arch; 2004 Mar; 447(6):934-42. PubMed ID: 14716490
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Voltage clamping of Xenopus laevis oocytes utilizing agarose-cushion electrodes.
    Schreibmayer W; Lester HA; Dascal N
    Pflugers Arch; 1994 Mar; 426(5):453-8. PubMed ID: 7517034
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rapid fluidic exchange microsystem for recording of fast ion channel kinetics in Xenopus oocytes.
    Dahan E; Bize V; Lehnert T; Horisberger JD; Gijs MA
    Lab Chip; 2008 Nov; 8(11):1809-18. PubMed ID: 18941679
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CFTR fails to inhibit the epithelial sodium channel ENaC expressed in Xenopus laevis oocytes.
    Nagel G; Barbry P; Chabot H; Brochiero E; Hartung K; Grygorczyk R
    J Physiol; 2005 May; 564(Pt 3):671-82. PubMed ID: 15746174
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Use of Xenopus oocytes to measure ionic selectivity of pore-forming peptides and ion channels.
    Cens T; Charnet P
    Methods Mol Biol; 2007; 403():287-302. PubMed ID: 18828001
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Integrated microsystem for non-invasive electrophysiological measurements on Xenopus oocytes.
    Dahan E; Bize V; Lehnert T; Horisberger JD; Gijs MA
    Biosens Bioelectron; 2007 Jun; 22(12):3196-202. PubMed ID: 17416513
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ion selectivity of pore-forming peptides and ion channels measured in Xenopus oocytes.
    Cens T; Charnet P
    Methods Mol Biol; 2014; 1183():355-69. PubMed ID: 25023320
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fluctuations in Xenopus oocytes protein phosphorylation levels during two-electrode voltage clamp measurements.
    Cohen A; Zilberberg N
    J Neurosci Methods; 2006 May; 153(1):62-70. PubMed ID: 16293314
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of voltage and extracellular Na(+) on amiloride block and transport kinetics of rat epithelial Na(+) channel expressed in Xenopus oocytes.
    Segal A; Awayda MS; Eggermont J; Van Driessche W; Weber WM
    Pflugers Arch; 2002 Mar; 443(5-6):882-91. PubMed ID: 11889589
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impact of the whole-cell patch-clamp configuration on the pharmacological assessment of the hERG channel: trazodone as a case example.
    Rodriguez-Menchaca AA; Ferrer T; Navarro-Polanco RA; Sanchez-Chapula JA; Moreno-Galindo EG
    J Pharmacol Toxicol Methods; 2014; 69(3):237-44. PubMed ID: 24412489
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional assay of mammalian and insect olfactory receptors using Xenopus oocytes.
    Luetje CW; Nichols AS; Castro A; Sherman BL
    Methods Mol Biol; 2013; 1003():187-202. PubMed ID: 23585043
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Two-microelectrode voltage clamp of Xenopus oocytes: voltage errors and compensation for local current flow.
    Baumgartner W; Islas L; Sigworth FJ
    Biophys J; 1999 Oct; 77(4):1980-91. PubMed ID: 10512818
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improved preparation of Xenopus oocytes for patch-clamp recording.
    Choe H; Sackin H
    Pflugers Arch; 1997 Mar; 433(5):648-52. PubMed ID: 9049151
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional expression of type 1 rat GABA transporter in microinjected Xenopus laevis oocytes.
    Giovannardi S; Soragna A; Magagnin S; Faravelli L
    Methods Mol Biol; 2007; 375():235-55. PubMed ID: 17634605
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrophysiological Characterization of Na,K-ATPases Expressed in Xenopus laevis Oocytes Using Two-Electrode Voltage Clamping.
    Hilbers F; Poulsen H
    Methods Mol Biol; 2016; 1377():305-18. PubMed ID: 26695042
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An improved method for real-time monitoring of membrane capacitance in Xenopus laevis oocytes.
    Schmitt BM; Koepsell H
    Biophys J; 2002 Mar; 82(3):1345-57. PubMed ID: 11867451
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Two-electrode voltage clamp.
    Guan B; Chen X; Zhang H
    Methods Mol Biol; 2013; 998():79-89. PubMed ID: 23529422
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Xenopus oocytes as a heterologous expression system for studying ion channels with the patch-clamp technique.
    Tammaro P; Shimomura K; Proks P
    Methods Mol Biol; 2008; 491():127-39. PubMed ID: 18998089
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recording macroscopic currents in large patches from Xenopus oocytes.
    Rohacs T
    Methods Mol Biol; 2013; 998():119-31. PubMed ID: 23529425
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.