BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 21870079)

  • 21. Staphylococcus aureus Prosthetic Joint Infection Is Prevented by a Fluorine- and Phosphorus-Doped Nanostructured Ti-6Al-4V Alloy Loaded With Gentamicin and Vancomycin.
    Auñón Á; Esteban J; Doadrio AL; Boiza-Sánchez M; Mediero A; Eguibar-Blázquez D; Cordero-Ampuero J; Conde A; Arenas MÁ; de-Damborenea JJ; Aguilera-Correa JJ
    J Orthop Res; 2020 Mar; 38(3):588-597. PubMed ID: 31608498
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The antibacterial properties and biocompatibility of a Ti-Cu sintered alloy for biomedical application.
    Liu J; Zhang X; Wang H; Li F; Li M; Yang K; Zhang E
    Biomed Mater; 2014 Apr; 9(2):025013. PubMed ID: 24565798
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Efficacy of bioabsorbable antibiotic containing bone screw in the prevention of biomaterial-related infection due to Staphylococcus aureus.
    Mäkinen TJ; Veiranto M; Knuuti J; Jalava J; Törmälä P; Aro HT
    Bone; 2005 Feb; 36(2):292-9. PubMed ID: 15780955
    [TBL] [Abstract][Full Text] [Related]  

  • 24. In vivo research on Cu-bearing ureteral stent.
    Zhao J; Cao Z; Lin H; Yang H; Li J; Li X; Zhang B; Yang K
    J Mater Sci Mater Med; 2019 Jul; 30(7):83. PubMed ID: 31273466
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Is galvanic corrosion between titanium alloy and stainless steel spinal implants a clinical concern?
    Serhan H; Slivka M; Albert T; Kwak SD
    Spine J; 2004; 4(4):379-87. PubMed ID: 15246296
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Zirconium Nitride Coating Reduced Staphylococcus epidermidis Biofilm Formation on Orthopaedic Implant Surfaces: An In Vitro Study.
    Pilz M; Staats K; Tobudic S; Assadian O; Presterl E; Windhager R; Holinka J
    Clin Orthop Relat Res; 2019 Feb; 477(2):461-466. PubMed ID: 30418277
    [TBL] [Abstract][Full Text] [Related]  

  • 27. In vitro and in vivo studies of anti-bacterial copper-bearing titanium alloy for dental application.
    Liu R; Tang Y; Zeng L; Zhao Y; Ma Z; Sun Z; Xiang L; Ren L; Yang K
    Dent Mater; 2018 Aug; 34(8):1112-1126. PubMed ID: 29709241
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Biocompatibility of fixation materials in the brain.
    Mofid MM; Thompson RC; Pardo CA; Manson PN; Vander Kolk CA
    Plast Reconstr Surg; 1997 Jul; 100(1):14-20; discussion 21-2. PubMed ID: 9207654
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Measurement of low corrosion rate of coronary stents-made of 316L and 317L stainless steel].
    Liang C; Guo L; Chen W
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2006 Aug; 23(4):829-31. PubMed ID: 17002118
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mechanical performance of the new posterior spinal implant: effect of materials, connecting plate, and pedicle screw design.
    Chen PQ; Lin SJ; Wu SS; So H
    Spine (Phila Pa 1976); 2003 May; 28(9):881-6; discussion 887. PubMed ID: 12942002
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Correlation between rate of bony ingrowth to stainless steel, pure titanium, and titanium alloy implants in vivo and formation of hydroxyapatite on their surfaces in vitro.
    Oron A; Agar G; Oron U; Stein A
    J Biomed Mater Res A; 2009 Dec; 91(4):1006-9. PubMed ID: 19097149
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Wear resistance of experimental Ti-Cu alloys.
    Ohkubo C; Shimura I; Aoki T; Hanatani S; Hosoi T; Hattori M; Oda Y; Okabe T
    Biomaterials; 2003 Sep; 24(20):3377-81. PubMed ID: 12809765
    [TBL] [Abstract][Full Text] [Related]  

  • 33. In vivo biocompatibility and mechanical study of novel bone-bioactive materials for prosthetic implantation.
    Zhang XS; Revell PA; Evans SL; Tuke MA; Gregson PJ
    J Biomed Mater Res; 1999 Aug; 46(2):279-86. PubMed ID: 10380007
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Copper and silver ion implantation of aluminium oxide-blasted titanium surfaces: proliferative response of osteoblasts and antibacterial effects.
    Fiedler J; Kolitsch A; Kleffner B; Henke D; Stenger S; Brenner RE
    Int J Artif Organs; 2011 Sep; 34(9):882-8. PubMed ID: 22094570
    [TBL] [Abstract][Full Text] [Related]  

  • 35. In vivo antibacterial property of Ti-Cu sintered alloy implant.
    Wang X; Dong H; Liu J; Qin G; Chen D; Zhang E
    Mater Sci Eng C Mater Biol Appl; 2019 Jul; 100():38-47. PubMed ID: 30948074
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Surface mechanical properties, corrosion resistance, and cytocompatibility of nitrogen plasma-implanted nickel-titanium alloys: a comparative study with commonly used medical grade materials.
    Yeung KW; Poon RW; Chu PK; Chung CY; Liu XY; Lu WW; Chan D; Chan SC; Luk KD; Cheung KM
    J Biomed Mater Res A; 2007 Aug; 82(2):403-14. PubMed ID: 17295246
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Microstructure, corrosion and tribological and antibacterial properties of Ti-Cu coated stainless steel.
    Jin X; Gao L; Liu E; Yu F; Shu X; Wang H
    J Mech Behav Biomed Mater; 2015 Oct; 50():23-32. PubMed ID: 26093948
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Wear characteristics of different metal-polyethylene beating surfaces. An experimental study of a new model of knee prosthesis].
    Farizon F; Aurelle JL; Rieu J; Bousquet G
    Rev Chir Orthop Reparatrice Appar Mot; 1996; 82(6):522-8. PubMed ID: 9122523
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Comparison of metal release from various metallic biomaterials in vitro.
    Okazaki Y; Gotoh E
    Biomaterials; 2005 Jan; 26(1):11-21. PubMed ID: 15193877
    [TBL] [Abstract][Full Text] [Related]  

  • 40. In vivo evaluation of copper release and acute local tissue reactions after implantation of copper-coated titanium implants in rats.
    Hoene A; Prinz C; Walschus U; Lucke S; Patrzyk M; Wilhelm L; Neumann HG; Schlosser M
    Biomed Mater; 2013 Jun; 8(3):035009. PubMed ID: 23598370
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.