BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

61 related articles for article (PubMed ID: 21870149)

  • 21. Acetylcholinesterase activity in the brain of rat pups and dams after exposure to lead via the maternal water supply.
    Gietzen DW; Woolley DE
    Neurotoxicology; 1984; 5(3):235-46. PubMed ID: 6542979
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Trypanosoma evansi: cholinesterase activity in acutely infected Wistar rats.
    Wolkmer P; Lopes ST; Franciscato C; da Silva AS; Traesel CK; Siqueira LC; Pereira ME; Monteiro SG; Mazzanti CM
    Exp Parasitol; 2010 Jul; 125(3):251-5. PubMed ID: 20138875
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Differential induction of oxidative impairments in brain regions of male mice following subchronic consumption of Khesari dhal (Lathyrus sativus) and detoxified Khesari dhal.
    Shinomol GK; Muralidhara
    Neurotoxicology; 2007 Jul; 28(4):798-806. PubMed ID: 17451808
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Dietary restriction lowers endogenous levels of oxidative stress in different brain regions of adult mice.
    Rathod P; Hemnani T; Parihar MS
    Cell Mol Biol (Noisy-le-grand); 2011 Sep; 57 Suppl():OL1575-80. PubMed ID: 21955387
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Long term dietary restriction ameliorates swimming exercise-induced oxidative stress in brain and lung of middle-aged rat.
    Aydin C; Sonat F; Sahin SK; Cangul IT; Ozkaya G
    Indian J Exp Biol; 2009 Jan; 47(1):24-31. PubMed ID: 19317348
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Neuroprotective potential of dietary restriction against kainate-induced excitotoxicity in adult male Wistar rats.
    Sharma S; Kaur G
    Brain Res Bull; 2005 Nov; 67(6):482-91. PubMed ID: 16216697
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Age-related cognitive decline in hypercholesterolemic LDL receptor knockout mice (LDLr-/-): evidence of antioxidant imbalance and increased acetylcholinesterase activity in the prefrontal cortex.
    Moreira EL; de Oliveira J; Nunes JC; Santos DB; Nunes FC; Vieira DS; Ribeiro-do-Valle RM; Pamplona FA; de Bem AF; Farina M; Walz R; Prediger RD
    J Alzheimers Dis; 2012; 32(2):495-511. PubMed ID: 22810096
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Sinusoidal ELF magnetic fields affect acetylcholinesterase activity in cerebellum synaptosomal membranes.
    Ravera S; Bianco B; Cugnoli C; Panfoli I; Calzia D; Morelli A; Pepe IM
    Bioelectromagnetics; 2010 May; 31(4):270-6. PubMed ID: 20041436
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effect of dietary restriction beyond middle age: accumulation of altered proteins and protein degradation.
    Takahashi R; Goto S
    Microsc Res Tech; 2002 Nov; 59(4):278-81. PubMed ID: 12424789
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A high inorganic phosphate diet perturbs brain growth, alters Akt-ERK signaling, and results in changes in cap-dependent translation.
    Jin H; Hwang SK; Yu K; Anderson HK; Lee YS; Lee KH; Prats AC; Morello D; Beck GR; Cho MH
    Toxicol Sci; 2006 Mar; 90(1):221-9. PubMed ID: 16338957
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Canine cognitive dysfunction and the cerebellum: acetylcholinesterase reduction, neuronal and glial changes.
    Pugliese M; Gangitano C; Ceccariglia S; Carrasco JL; Del Fà A; Rodríguez MJ; Michetti F; Mascort J; Mahy N
    Brain Res; 2007 Mar; 1139():85-94. PubMed ID: 17292335
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effects of acetylcholinesterase and butyrylcholinesterase inhibition on breathing in mice adapted or not to reduced acetylcholinesterase.
    Boudinot E; Taysse L; Daulon S; Chatonnet A; Champagnat J; Foutz AS
    Pharmacol Biochem Behav; 2005 Jan; 80(1):53-61. PubMed ID: 15652380
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Altered expression of brain acetylcholinesterase in FTDP-17 human tau transgenic mice.
    Silveyra MX; García-Ayllón MS; de Barreda EG; Small DH; Martínez S; Avila J; Sáez-Valero J
    Neurobiol Aging; 2012 Mar; 33(3):624.e23-34. PubMed ID: 21530001
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Transgenic mice overexpressing human acetylcholinesterase and the Swedish amyloid precursor protein mutation: effect of nicotine treatment.
    Hedberg MM; Svedberg MM; Mustafiz T; Yu WF; Mousavi M; Guan ZZ; Unger C; Nordberg A
    Neuroscience; 2008 Mar; 152(1):223-33. PubMed ID: 18164554
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effect of hormone replacement therapy in normalizing age related neuronal markers in different age groups of naturally menopausal rats.
    Moorthy K; Yadav UC; Siddiqui MR; Mantha AK; Basir SF; Sharma D; Cowsik SM; Baquer NZ
    Biogerontology; 2005; 6(5):345-56. PubMed ID: 16463111
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Delivery of human acetylcholinesterase by adeno-associated virus to the acetylcholinesterase knockout mouse.
    Hrabovska A; Duysen EG; Sanders JD; Murrin LC; Lockridge O
    Chem Biol Interact; 2005 Dec; 157-158():71-8. PubMed ID: 16243306
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Differential effects of hydrocortisone on alanine aminotransferase isoenzymes of the cerebral hemispheres and cerebellum of rats during growth, development, and senescence.
    Patnaik SK
    Biochem Int; 1990; 21(1):175-84. PubMed ID: 2386537
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Age-dependent increased expression and activity of inorganic pyrophosphatase in the liver of male mice and its further enhancement with short- and long-term dietary restriction.
    Kharbhih WJ; Sharma R
    Biogerontology; 2014 Feb; 15(1):81-6. PubMed ID: 24271717
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Acetylcholinesterase level and molecular isoforms are altered in brain of Reelin Orleans mutant mice.
    García-Ayllón MS; Seguí D; Perales M; López-Hurtado E; Prieto JJ; Sáez-Valero J
    J Neurochem; 2003 Nov; 87(3):773-9. PubMed ID: 14535959
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Short-term dietary restriction in old zebrafish changes cell senescence mechanisms.
    Arslan-Ergul A; Erbaba B; Karoglu ET; Halim DO; Adams MM
    Neuroscience; 2016 Oct; 334():64-75. PubMed ID: 27475251
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.