These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 21870379)

  • 1. Nanocomposite biomaterial mimicking aortic heart valve leaflet mechanical behaviour.
    Mohammadi H
    Proc Inst Mech Eng H; 2011 Jul; 225(7):718-22. PubMed ID: 21870379
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimizing the tensile properties of polyvinyl alcohol hydrogel for the construction of a bioprosthetic heart valve stent.
    Wan WK; Campbell G; Zhang ZF; Hui AJ; Boughner DR
    J Biomed Mater Res; 2002; 63(6):854-61. PubMed ID: 12418034
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design and simulation of a poly(vinyl alcohol)-bacterial cellulose nanocomposite mechanical aortic heart valve prosthesis.
    Mohammadi H; Boughner D; Millon LE; Wan WK
    Proc Inst Mech Eng H; 2009 Aug; 223(6):697-711. PubMed ID: 19743636
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anisotropic polyvinyl alcohol hydrogel for cardiovascular applications.
    Millon LE; Mohammadi H; Wan WK
    J Biomed Mater Res B Appl Biomater; 2006 Nov; 79(2):305-11. PubMed ID: 16680682
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Anisotropic polyvinyl alcohol-Bacterial cellulose nanocomposite for biomedical applications.
    Millon LE; Guhados G; Wan W
    J Biomed Mater Res B Appl Biomater; 2008 Aug; 86(2):444-52. PubMed ID: 18288695
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The polyvinyl alcohol-bacterial cellulose system as a new nanocomposite for biomedical applications.
    Millon LE; Wan WK
    J Biomed Mater Res B Appl Biomater; 2006 Nov; 79(2):245-53. PubMed ID: 16680717
    [TBL] [Abstract][Full Text] [Related]  

  • 7. St Jude Epic heart valve bioprostheses versus native human and porcine aortic valves - comparison of mechanical properties.
    Kalejs M; Stradins P; Lacis R; Ozolanta I; Pavars J; Kasyanov V
    Interact Cardiovasc Thorac Surg; 2009 May; 8(5):553-6. PubMed ID: 19190025
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Aortic valve leaflet mechanical properties facilitate diastolic valve function.
    Koch TM; Reddy BD; Zilla P; Franz T
    Comput Methods Biomech Biomed Engin; 2010; 13(2):225-34. PubMed ID: 19657802
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural analysis of a stented pericardial heart valve with leaflets mounted externally.
    Avanzini A; Battini D
    Proc Inst Mech Eng H; 2014 Oct; 228(10):985-95. PubMed ID: 25252695
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tissue engineering of cardiac valve prostheses II: biomechanical characterization of decellularized porcine aortic heart valves.
    Korossis SA; Booth C; Wilcox HE; Watterson KG; Kearney JN; Fisher J; Ingham E
    J Heart Valve Dis; 2002 Jul; 11(4):463-71. PubMed ID: 12150291
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Natural preload of aortic valve leaflet components during glutaraldehyde fixation: effects on tissue mechanics.
    Vesely I; Lozon A
    J Biomech; 1993 Feb; 26(2):121-31. PubMed ID: 8429055
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Leaflet opening and closing dynamics of stentless bioprostheses.
    Frost MW; Funderl JA; Klaaborg KE; Wierup P; Sloth E; Nygaard H; Hasenkam JM
    J Heart Valve Dis; 2010 Jul; 19(4):492-8. PubMed ID: 20845898
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design and manufacture of a polyvinyl alcohol (PVA) cryogel tri-leaflet heart valve prosthesis.
    Jiang H; Campbell G; Boughner D; Wan WK; Quantz M
    Med Eng Phys; 2004 May; 26(4):269-77. PubMed ID: 15121052
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Determination of the curvatures and bending strains in open trileaflet heart valves.
    Corden J; David T; Fisher J
    Proc Inst Mech Eng H; 1995; 209(2):121-8. PubMed ID: 7495427
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The glutaraldehyde-stabilized porcine aortic valve xenograft. I. Tensile viscoelastic properties of the fresh leaflet material.
    Lee JM; Courtman DW; Boughner DR
    J Biomed Mater Res; 1984 Jan; 18(1):61-77. PubMed ID: 6699033
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Hemodynamic performance of newly developed composite stentless porcine aortic valve: in vitro testing and in vivo experiment with sheep].
    Song GM; Zhou JY; Hu SS; Cui JW; Song YH; Tang Y; Zhang Y; Jiang H; Yuan WM; Song XY
    Zhonghua Yi Xue Za Zhi; 2008 Jul; 88(29):2059-63. PubMed ID: 19080436
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In-vitro assessment of the functional performance of the decellularized intact porcine aortic root.
    Korossis SA; Wilcox HE; Watterson KG; Kearney JN; Ingham E; Fisher J
    J Heart Valve Dis; 2005 May; 14(3):408-21; discussion 422. PubMed ID: 15974537
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A three-dimensional mechanical analysis of a stentless fibre-reinforced aortic valve prosthesis.
    Cacciola G; Peters GW; Schreurs PJ
    J Biomech; 2000 May; 33(5):521-30. PubMed ID: 10708772
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An approach to the optimization of preparation of bioprosthetic heart valves.
    Mavrilas D; Missirlis Y
    J Biomech; 1991; 24(5):331-9. PubMed ID: 1904875
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Geometrical stress-reducing factors in the anisotropic porcine heart valves.
    Luo XY; Li WG; Li J
    J Biomech Eng; 2003 Oct; 125(5):735-44. PubMed ID: 14618934
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.