These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Optimizing the tensile properties of polyvinyl alcohol hydrogel for the construction of a bioprosthetic heart valve stent. Wan WK; Campbell G; Zhang ZF; Hui AJ; Boughner DR J Biomed Mater Res; 2002; 63(6):854-61. PubMed ID: 12418034 [TBL] [Abstract][Full Text] [Related]
3. Design and simulation of a poly(vinyl alcohol)-bacterial cellulose nanocomposite mechanical aortic heart valve prosthesis. Mohammadi H; Boughner D; Millon LE; Wan WK Proc Inst Mech Eng H; 2009 Aug; 223(6):697-711. PubMed ID: 19743636 [TBL] [Abstract][Full Text] [Related]
4. Anisotropic polyvinyl alcohol hydrogel for cardiovascular applications. Millon LE; Mohammadi H; Wan WK J Biomed Mater Res B Appl Biomater; 2006 Nov; 79(2):305-11. PubMed ID: 16680682 [TBL] [Abstract][Full Text] [Related]
5. Anisotropic polyvinyl alcohol-Bacterial cellulose nanocomposite for biomedical applications. Millon LE; Guhados G; Wan W J Biomed Mater Res B Appl Biomater; 2008 Aug; 86(2):444-52. PubMed ID: 18288695 [TBL] [Abstract][Full Text] [Related]
6. The polyvinyl alcohol-bacterial cellulose system as a new nanocomposite for biomedical applications. Millon LE; Wan WK J Biomed Mater Res B Appl Biomater; 2006 Nov; 79(2):245-53. PubMed ID: 16680717 [TBL] [Abstract][Full Text] [Related]
7. St Jude Epic heart valve bioprostheses versus native human and porcine aortic valves - comparison of mechanical properties. Kalejs M; Stradins P; Lacis R; Ozolanta I; Pavars J; Kasyanov V Interact Cardiovasc Thorac Surg; 2009 May; 8(5):553-6. PubMed ID: 19190025 [TBL] [Abstract][Full Text] [Related]
13. Design and manufacture of a polyvinyl alcohol (PVA) cryogel tri-leaflet heart valve prosthesis. Jiang H; Campbell G; Boughner D; Wan WK; Quantz M Med Eng Phys; 2004 May; 26(4):269-77. PubMed ID: 15121052 [TBL] [Abstract][Full Text] [Related]
14. Determination of the curvatures and bending strains in open trileaflet heart valves. Corden J; David T; Fisher J Proc Inst Mech Eng H; 1995; 209(2):121-8. PubMed ID: 7495427 [TBL] [Abstract][Full Text] [Related]
15. The glutaraldehyde-stabilized porcine aortic valve xenograft. I. Tensile viscoelastic properties of the fresh leaflet material. Lee JM; Courtman DW; Boughner DR J Biomed Mater Res; 1984 Jan; 18(1):61-77. PubMed ID: 6699033 [TBL] [Abstract][Full Text] [Related]
16. [Hemodynamic performance of newly developed composite stentless porcine aortic valve: in vitro testing and in vivo experiment with sheep]. Song GM; Zhou JY; Hu SS; Cui JW; Song YH; Tang Y; Zhang Y; Jiang H; Yuan WM; Song XY Zhonghua Yi Xue Za Zhi; 2008 Jul; 88(29):2059-63. PubMed ID: 19080436 [TBL] [Abstract][Full Text] [Related]
18. A three-dimensional mechanical analysis of a stentless fibre-reinforced aortic valve prosthesis. Cacciola G; Peters GW; Schreurs PJ J Biomech; 2000 May; 33(5):521-30. PubMed ID: 10708772 [TBL] [Abstract][Full Text] [Related]
19. An approach to the optimization of preparation of bioprosthetic heart valves. Mavrilas D; Missirlis Y J Biomech; 1991; 24(5):331-9. PubMed ID: 1904875 [TBL] [Abstract][Full Text] [Related]
20. Geometrical stress-reducing factors in the anisotropic porcine heart valves. Luo XY; Li WG; Li J J Biomech Eng; 2003 Oct; 125(5):735-44. PubMed ID: 14618934 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]