These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
278 related articles for article (PubMed ID: 21870776)
1. Stick-slip of evaporating droplets: substrate hydrophobicity and nanoparticle concentration. Orejon D; Sefiane K; Shanahan ME Langmuir; 2011 Nov; 27(21):12834-43. PubMed ID: 21870776 [TBL] [Abstract][Full Text] [Related]
2. Surfactant solutions and porous substrates: spreading and imbibition. Starov VM Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660 [TBL] [Abstract][Full Text] [Related]
3. Evaporation of nanodroplets on heated substrates: a molecular dynamics simulation study. Zhang J; Leroy F; Müller-Plathe F Langmuir; 2013 Aug; 29(31):9770-82. PubMed ID: 23848165 [TBL] [Abstract][Full Text] [Related]
4. Nanofluids droplets evaporation kinetics and wetting dynamics on rough heated substrates. Sefiane K; Bennacer R Adv Colloid Interface Sci; 2009; 147-148():263-71. PubMed ID: 19019321 [TBL] [Abstract][Full Text] [Related]
5. Dependence of volatile droplet lifetime on the hydrophobicity of the substrate. Shanahan ME; Sefiane K; Moffat JR Langmuir; 2011 Apr; 27(8):4572-7. PubMed ID: 21434625 [TBL] [Abstract][Full Text] [Related]
6. Effect of TiO2 nanoparticles on contact line stick-slip behavior of volatile drops. Moffat JR; Sefiane K; Shanahan ME J Phys Chem B; 2009 Jul; 113(26):8860-6. PubMed ID: 19507829 [TBL] [Abstract][Full Text] [Related]
7. Assembly of nanoparticles at the contact line of a drying droplet under the influence of a dipped tip. Keseroğlu K; Culha M J Colloid Interface Sci; 2011 Aug; 360(1):8-14. PubMed ID: 21546030 [TBL] [Abstract][Full Text] [Related]
8. Influence of surface orientation on the organization of nanoparticles in drying nanofluid droplets. Hampton MA; Nguyen TA; Nguyen AV; Xu ZP; Huang L; Rudolph V J Colloid Interface Sci; 2012 Jul; 377(1):456-62. PubMed ID: 22503627 [TBL] [Abstract][Full Text] [Related]
9. Highly transparent superhydrophobic surfaces from the coassembly of nanoparticles (≤100 nm). Karunakaran RG; Lu CH; Zhang Z; Yang S Langmuir; 2011 Apr; 27(8):4594-602. PubMed ID: 21355577 [TBL] [Abstract][Full Text] [Related]
10. Binary Mixture Droplet Evaporation on Microstructured Decorated Surfaces and the Mixed Stick-Slip Modes. Al Balushi KM; Duursma G; Valluri P; Sefiane K; Orejon D Langmuir; 2023 Jun; 39(23):8323-8338. PubMed ID: 37272784 [TBL] [Abstract][Full Text] [Related]
11. Effect of nonionic surfactant on wetting behavior of an evaporating drop under a reduced pressure environment. Sefiane K J Colloid Interface Sci; 2004 Apr; 272(2):411-9. PubMed ID: 15028506 [TBL] [Abstract][Full Text] [Related]
12. Measurements and simulations of the near-surface composition of evaporating ethanol-water droplets. Homer CJ; Jiang X; Ward TL; Brinker CJ; Reid JP Phys Chem Chem Phys; 2009 Sep; 11(36):7780-91. PubMed ID: 19727484 [TBL] [Abstract][Full Text] [Related]
13. Evaporation of picoliter droplets on surfaces with a range of wettabilities and thermal conductivities. Talbot EL; Berson A; Brown PS; Bain CD Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jun; 85(6 Pt 1):061604. PubMed ID: 23005106 [TBL] [Abstract][Full Text] [Related]
14. Systematically altering the hydrophobic nanobubble bridging capillary force from attractive to repulsive. Hampton MA; Nguyen AV J Colloid Interface Sci; 2009 May; 333(2):800-6. PubMed ID: 19215936 [TBL] [Abstract][Full Text] [Related]
15. On the role of the three-phase contact line in surface deformation. Leh A; N'guessan HE; Fan J; Bahadur P; Tadmor R; Zhao Y Langmuir; 2012 Apr; 28(13):5795-801. PubMed ID: 22375701 [TBL] [Abstract][Full Text] [Related]
16. Drop evaporation on superhydrophobic PTFE surfaces driven by contact line dynamics. Ramos SM; Dias JF; Canut B J Colloid Interface Sci; 2015 Feb; 440():133-9. PubMed ID: 25460699 [TBL] [Abstract][Full Text] [Related]
17. Effect of substrate temperature on pattern formation of nanoparticles from volatile drops. Parsa M; Harmand S; Sefiane K; Bigerelle M; Deltombe R Langmuir; 2015 Mar; 31(11):3354-67. PubMed ID: 25742508 [TBL] [Abstract][Full Text] [Related]
18. Analysis of droplet evaporation on a superhydrophobic surface. McHale G; Aqil S; Shirtcliffe NJ; Newton MI; Erbil HY Langmuir; 2005 Nov; 21(24):11053-60. PubMed ID: 16285771 [TBL] [Abstract][Full Text] [Related]
19. Pinning-Depinning Mechanism of the Contact Line during Evaporation on Chemically Patterned Surfaces: A Lattice Boltzmann Study. Li Q; Zhou P; Yan HJ Langmuir; 2016 Sep; 32(37):9389-96. PubMed ID: 27579557 [TBL] [Abstract][Full Text] [Related]
20. Evaporation of sessile droplets affected by graphite nanoparticles and binary base fluids. Zhong X; Duan F J Phys Chem B; 2014 Nov; 118(47):13636-45. PubMed ID: 25372453 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]