These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
151 related articles for article (PubMed ID: 21870808)
1. Spectroscopic and computational studies of α-keto acid binding to Dke1: understanding the role of the facial triad and the reactivity of β-diketones. Diebold AR; Straganz GD; Solomon EI J Am Chem Soc; 2011 Oct; 133(40):15979-91. PubMed ID: 21870808 [TBL] [Abstract][Full Text] [Related]
2. The three-his triad in Dke1: comparisons to the classical facial triad. Diebold AR; Neidig ML; Moran GR; Straganz GD; Solomon EI Biochemistry; 2010 Aug; 49(32):6945-52. PubMed ID: 20695531 [TBL] [Abstract][Full Text] [Related]
3. Synthesis and characterization of Fe(II) β-diketonato complexes with relevance to acetylacetone dioxygenase: insights into the electronic properties of the 3-histidine facial triad. Park H; Baus JS; Lindeman SV; Fiedler AT Inorg Chem; 2011 Dec; 50(23):11978-89. PubMed ID: 22034915 [TBL] [Abstract][Full Text] [Related]
4. Reaction coordinate analysis for beta-diketone cleavage by the non-heme Fe2+-dependent dioxygenase Dke1. Straganz GD; Nidetzky B J Am Chem Soc; 2005 Sep; 127(35):12306-14. PubMed ID: 16131208 [TBL] [Abstract][Full Text] [Related]
5. Biochemical characterization and mutational analysis of the mononuclear non-haem Fe2+ site in Dke1, a cupin-type dioxygenase from Acinetobacter johnsonii. Leitgeb S; Straganz GD; Nidetzky B Biochem J; 2009 Mar; 418(2):403-11. PubMed ID: 18973472 [TBL] [Abstract][Full Text] [Related]
6. Fe(II) complexes that mimic the active site structure of acetylacetone dioxygenase: O2 and NO reactivity. Park H; Bittner MM; Baus JS; Lindeman SV; Fiedler AT Inorg Chem; 2012 Oct; 51(19):10279-89. PubMed ID: 22974346 [TBL] [Abstract][Full Text] [Related]
7. Exploring the catalytic potential of the 3-His mononuclear nonheme Fe(II) center: discovery and characterization of an unprecedented maltol cleavage activity. Di Giuro CM; Buongiorno D; Leitner E; Straganz GD J Inorg Biochem; 2011 Sep; 105(9):1204-11. PubMed ID: 21718656 [TBL] [Abstract][Full Text] [Related]
8. Dke1--structure, dynamics, and function: a theoretical and experimental study elucidating the role of the binding site shape and the hydrogen-bonding network in catalysis. Brkić H; Buongiorno D; Ramek M; Straganz G; Tomić S J Biol Inorg Chem; 2012 Jun; 17(5):801-15. PubMed ID: 22526564 [TBL] [Abstract][Full Text] [Related]
9. Spectroscopic and electronic structure studies of the role of active site interactions in the decarboxylation reaction of alpha-keto acid-dependent dioxygenases. Neidig ML; Brown CD; Kavana M; Choroba OW; Spencer JB; Moran GR; Solomon EI J Inorg Biochem; 2006 Dec; 100(12):2108-16. PubMed ID: 17070917 [TBL] [Abstract][Full Text] [Related]
10. Activation of α-keto acid-dependent dioxygenases: application of an {FeNO}7/{FeO2}8 methodology for characterizing the initial steps of O2 activation. Diebold AR; Brown-Marshall CD; Neidig ML; Brownlee JM; Moran GR; Solomon EI J Am Chem Soc; 2011 Nov; 133(45):18148-60. PubMed ID: 21981763 [TBL] [Abstract][Full Text] [Related]
11. Kinetic and CD/MCD spectroscopic studies of the atypical, three-His-ligated, non-heme Fe2+ center in diketone dioxygenase: the role of hydrophilic outer shell residues in catalysis. Straganz GD; Diebold AR; Egger S; Nidetzky B; Solomon EI Biochemistry; 2010 Feb; 49(5):996-1004. PubMed ID: 20050606 [TBL] [Abstract][Full Text] [Related]
12. Why do cysteine dioxygenase enzymes contain a 3-His ligand motif rather than a 2His/1Asp motif like most nonheme dioxygenases? de Visser SP; Straganz GD J Phys Chem A; 2009 Mar; 113(9):1835-46. PubMed ID: 19199799 [TBL] [Abstract][Full Text] [Related]
13. Manganese-promoted cleavage of acetylacetonate resembling the β-diketone cleaving dioxygenase (Dke1) reactivity. Yang C; Liu D; Wang T; Sun F; Qiu S; Wu G Chem Commun (Camb); 2021 Sep; 57(74):9462-9465. PubMed ID: 34528953 [TBL] [Abstract][Full Text] [Related]
14. Oxygen activation by nonheme iron(II) complexes: alpha-keto carboxylate versus carboxylate. Mehn MP; Fujisawa K; Hegg EL; Que L J Am Chem Soc; 2003 Jul; 125(26):7828-42. PubMed ID: 12823001 [TBL] [Abstract][Full Text] [Related]
15. Quantum chemical studies of dioxygen activation by mononuclear non-heme iron enzymes with the 2-His-1-carboxylate facial triad. Bassan A; Borowski T; Siegbahn PE Dalton Trans; 2004 Oct; (20):3153-62. PubMed ID: 15483690 [TBL] [Abstract][Full Text] [Related]
16. Utilizing the Trispyrazolyl Borate Ligand for the Mimicking of O2-Activating Mononuclear Nonheme Iron Enzymes. Sallmann M; Limberg C Acc Chem Res; 2015 Oct; 48(10):2734-43. PubMed ID: 26305516 [TBL] [Abstract][Full Text] [Related]
17. Enzyme catalytic promiscuity: the nonheme Fe2+ center of beta-diketone-cleaving dioxygenase Dke1 promotes hydrolysis of activated esters. Leitgeb S; Nidetzky B Chembiochem; 2010 Mar; 11(4):502-5. PubMed ID: 20112320 [No Abstract] [Full Text] [Related]
18. Bioinspired models for an unusual 3-histidine motif of diketone dioxygenase enzyme. Ramasubramanian R; Anandababu K; Mösch-Zanetti NC; Belaj F; Mayilmurugan R Dalton Trans; 2019 Oct; 48(38):14326-14336. PubMed ID: 31486449 [TBL] [Abstract][Full Text] [Related]
19. CD and MCD of CytC3 and taurine dioxygenase: role of the facial triad in alpha-KG-dependent oxygenases. Neidig ML; Brown CD; Light KM; Fujimori DG; Nolan EM; Price JC; Barr EW; Bollinger JM; Krebs C; Walsh CT; Solomon EI J Am Chem Soc; 2007 Nov; 129(46):14224-31. PubMed ID: 17967013 [TBL] [Abstract][Full Text] [Related]
20. Modeling the 2-His-1-carboxylate facial triad: iron-catecholato complexes as structural and functional models of the extradiol cleaving dioxygenases. Bruijnincx PC; Lutz M; Spek AL; Hagen WR; Weckhuysen BM; van Koten G; Gebbink RJ J Am Chem Soc; 2007 Feb; 129(8):2275-86. PubMed ID: 17266307 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]