These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
204 related articles for article (PubMed ID: 21870882)
1. Proteome of skeletal muscle lipid droplet reveals association with mitochondria and apolipoprotein a-I. Zhang H; Wang Y; Li J; Yu J; Pu J; Li L; Zhang H; Zhang S; Peng G; Yang F; Liu P J Proteome Res; 2011 Oct; 10(10):4757-68. PubMed ID: 21870882 [TBL] [Abstract][Full Text] [Related]
2. Acute exercise increases the contact between lipid droplets and mitochondria independently of obesity and type 2 diabetes. de Almeida ME; Ørtenblad N; Petersen MH; Schjerning AN; Wentorf EK; Jensen K; Højlund K; Nielsen J J Physiol; 2023 May; 601(10):1797-1815. PubMed ID: 37013398 [TBL] [Abstract][Full Text] [Related]
3. Skeletal Muscle Lipid Droplets and the Athlete's Paradox. Li X; Li Z; Zhao M; Nie Y; Liu P; Zhu Y; Zhang X Cells; 2019 Mar; 8(3):. PubMed ID: 30875966 [TBL] [Abstract][Full Text] [Related]
4. Type 2 diabetes mellitus and skeletal muscle metabolic function. Phielix E; Mensink M Physiol Behav; 2008 May; 94(2):252-8. PubMed ID: 18342897 [TBL] [Abstract][Full Text] [Related]
5. [Insulin resistance: the role of intramuscular triglyceride and the importance of physical activity]. Timmermans RJ; Saris WH; van Loon LJ Ned Tijdschr Geneeskd; 2006 Jan; 150(3):122-7. PubMed ID: 16463611 [TBL] [Abstract][Full Text] [Related]
6. Human apolipoprotein A-II determines plasma triglycerides by regulating lipoprotein lipase activity and high-density lipoprotein proteome. Julve J; Escolà-Gil JC; Rotllan N; Fiévet C; Vallez E; de la Torre C; Ribas V; Sloan JH; Blanco-Vaca F Arterioscler Thromb Vasc Biol; 2010 Feb; 30(2):232-8. PubMed ID: 19910634 [TBL] [Abstract][Full Text] [Related]
7. Effects of physical activity and weight loss on skeletal muscle mitochondria and relationship with glucose control in type 2 diabetes. Toledo FG; Menshikova EV; Ritov VB; Azuma K; Radikova Z; DeLany J; Kelley DE Diabetes; 2007 Aug; 56(8):2142-7. PubMed ID: 17536063 [TBL] [Abstract][Full Text] [Related]
8. Decreased skeletal muscle intramyocellular lipid droplet-mitochondrial contact contributes to myosteatosis in cancer cachexia. Cardaci TD; VanderVeen BN; Huss AR; Bullard BM; Velázquez KT; Frizzell N; Carson JA; Price RL; Murphy EA Am J Physiol Cell Physiol; 2024 Sep; 327(3):C684-C697. PubMed ID: 39010842 [TBL] [Abstract][Full Text] [Related]
9. Inhibition of xanthine oxidase reduces hyperglycemia-induced oxidative stress and improves mitochondrial alterations in skeletal muscle of diabetic mice. Bravard A; Bonnard C; Durand A; Chauvin MA; Favier R; Vidal H; Rieusset J Am J Physiol Endocrinol Metab; 2011 Mar; 300(3):E581-91. PubMed ID: 21224483 [TBL] [Abstract][Full Text] [Related]
10. Altered intramuscular network of lipid droplets and mitochondria in type 2 diabetes. de Almeida ME; Nielsen J; Petersen MH; Wentorf EK; Pedersen NB; Jensen K; Højlund K; Ørtenblad N Am J Physiol Cell Physiol; 2023 Jan; 324(1):C39-C57. PubMed ID: 36409174 [TBL] [Abstract][Full Text] [Related]
11. Excess lipid availability increases mitochondrial fatty acid oxidative capacity in muscle: evidence against a role for reduced fatty acid oxidation in lipid-induced insulin resistance in rodents. Turner N; Bruce CR; Beale SM; Hoehn KL; So T; Rolph MS; Cooney GJ Diabetes; 2007 Aug; 56(8):2085-92. PubMed ID: 17519422 [TBL] [Abstract][Full Text] [Related]
13. Proteomic and bioinformatic analysis of membrane proteome in type 2 diabetic mouse liver. Kim GH; Park EC; Yun SH; Hong Y; Lee DG; Shin EY; Jung J; Kim YH; Lee KB; Jang IS; Lee ZW; Chung YH; Choi JS; Cheong C; Kim S; Kim SI Proteomics; 2013 Apr; 13(7):1164-79. PubMed ID: 23349036 [TBL] [Abstract][Full Text] [Related]
14. Lipid droplet size and location in human skeletal muscle fibers are associated with insulin sensitivity. Nielsen J; Christensen AE; Nellemann B; Christensen B Am J Physiol Endocrinol Metab; 2017 Dec; 313(6):E721-E730. PubMed ID: 28743757 [TBL] [Abstract][Full Text] [Related]
15. Increased subsarcolemmal lipids in type 2 diabetes: effect of training on localization of lipids, mitochondria, and glycogen in sedentary human skeletal muscle. Nielsen J; Mogensen M; Vind BF; Sahlin K; Højlund K; Schrøder HD; Ortenblad N Am J Physiol Endocrinol Metab; 2010 Mar; 298(3):E706-13. PubMed ID: 20028967 [TBL] [Abstract][Full Text] [Related]
16. A proteome map of murine heart and skeletal muscle. Raddatz K; Albrecht D; Hochgräfe F; Hecker M; Gotthardt M Proteomics; 2008 May; 8(9):1885-97. PubMed ID: 18398877 [TBL] [Abstract][Full Text] [Related]
17. Desaturation of skeletal muscle structural and depot lipids in obese individuals during a very-low-calorie diet intervention. Haugaard SB; Vaag A; Høy CE; Madsbad S Obesity (Silver Spring); 2007 Jan; 15(1):117-25. PubMed ID: 17228039 [TBL] [Abstract][Full Text] [Related]
18. Training alters the distribution of perilipin proteins in muscle following acute free fatty acid exposure. Shepherd SO; Strauss JA; Wang Q; Dube JJ; Goodpaster B; Mashek DG; Chow LS J Physiol; 2017 Aug; 595(16):5587-5601. PubMed ID: 28560826 [TBL] [Abstract][Full Text] [Related]
19. Deleterious action of FA metabolites on ATP synthesis: possible link between lipotoxicity, mitochondrial dysfunction, and insulin resistance. Abdul-Ghani MA; Muller FL; Liu Y; Chavez AO; Balas B; Zuo P; Chang Z; Tripathy D; Jani R; Molina-Carrion M; Monroy A; Folli F; Van Remmen H; DeFronzo RA Am J Physiol Endocrinol Metab; 2008 Sep; 295(3):E678-85. PubMed ID: 18593850 [TBL] [Abstract][Full Text] [Related]
20. Beta-amyloid protein-containing inclusions in skeletal muscle of apolipoprotein-E-deficient mice. Robertson TA; Dutton NS; Martins RN; Roses AD; Kakulas BA; Papadimitriou JM Am J Pathol; 1997 Feb; 150(2):417-27. PubMed ID: 9033257 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]