These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
282 related articles for article (PubMed ID: 21871133)
1. Apigenin inhibits proliferation and induces apoptosis in human multiple myeloma cells through targeting the trinity of CK2, Cdc37 and Hsp90. Zhao M; Ma J; Zhu HY; Zhang XH; Du ZY; Xu YJ; Yu XD Mol Cancer; 2011 Aug; 10():104. PubMed ID: 21871133 [TBL] [Abstract][Full Text] [Related]
2. Protein kinase CK2 protects multiple myeloma cells from ER stress-induced apoptosis and from the cytotoxic effect of HSP90 inhibition through regulation of the unfolded protein response. Manni S; Brancalion A; Tubi LQ; Colpo A; Pavan L; Cabrelle A; Ave E; Zaffino F; Di Maira G; Ruzzene M; Adami F; Zambello R; Pitari MR; Tassone P; Pinna LA; Gurrieri C; Semenzato G; Piazza F Clin Cancer Res; 2012 Apr; 18(7):1888-900. PubMed ID: 22351691 [TBL] [Abstract][Full Text] [Related]
3. Silencing the cochaperone CDC37 destabilizes kinase clients and sensitizes cancer cells to HSP90 inhibitors. Smith JR; Clarke PA; de Billy E; Workman P Oncogene; 2009 Jan; 28(2):157-69. PubMed ID: 18931700 [TBL] [Abstract][Full Text] [Related]
4. Coordinated targeting of CK2 and KIT in gastrointestinal stromal tumours. Huang M; Yang W; Zhu J; Mariño-Enríquez A; Zhu C; Chen J; Wu Y; Quan Y; Qiu H; Li X; Chai L; Fletcher JA; Ou WB Br J Cancer; 2020 Feb; 122(3):372-381. PubMed ID: 31776458 [TBL] [Abstract][Full Text] [Related]
5. FW-04-806 inhibits proliferation and induces apoptosis in human breast cancer cells by binding to N-terminus of Hsp90 and disrupting Hsp90-Cdc37 complex formation. Huang W; Ye M; Zhang LR; Wu QD; Zhang M; Xu JH; Zheng W Mol Cancer; 2014 Jun; 13():150. PubMed ID: 24927996 [TBL] [Abstract][Full Text] [Related]
6. Targeting CDC37: an alternative, kinase-directed strategy for disruption of oncogenic chaperoning. Smith JR; Workman P Cell Cycle; 2009 Feb; 8(3):362-72. PubMed ID: 19177013 [TBL] [Abstract][Full Text] [Related]
7. Specific regulation of noncanonical p38alpha activation by Hsp90-Cdc37 chaperone complex in cardiomyocyte. Ota A; Zhang J; Ping P; Han J; Wang Y Circ Res; 2010 Apr; 106(8):1404-12. PubMed ID: 20299663 [TBL] [Abstract][Full Text] [Related]
8. Optimization and biological evaluation of celastrol derivatives as Hsp90-Cdc37 interaction disruptors with improved druglike properties. Jiang F; Wang HJ; Bao QC; Wang L; Jin YH; Zhang Q; Jiang D; You QD; Xu XL Bioorg Med Chem; 2016 Nov; 24(21):5431-5439. PubMed ID: 27647369 [TBL] [Abstract][Full Text] [Related]
9. CK2 binds, phosphorylates, and regulates its pivotal substrate Cdc37, an Hsp90-cochaperone. Miyata Y; Nishida E Mol Cell Biochem; 2005 Jun; 274(1-2):171-9. PubMed ID: 16335536 [TBL] [Abstract][Full Text] [Related]
10. A novel Hsp90 inhibitor to disrupt Hsp90/Cdc37 complex against pancreatic cancer cells. Zhang T; Hamza A; Cao X; Wang B; Yu S; Zhan CG; Sun D Mol Cancer Ther; 2008 Jan; 7(1):162-70. PubMed ID: 18202019 [TBL] [Abstract][Full Text] [Related]
11. Inhibition of HSP90 overcomes melphalan resistance through downregulation of Src in multiple myeloma cells. Tabata M; Tsubaki M; Takeda T; Tateishi K; Maekawa S; Tsurushima K; Imano M; Satou T; Ishizaka T; Nishida S Clin Exp Med; 2020 Feb; 20(1):63-71. PubMed ID: 31650359 [TBL] [Abstract][Full Text] [Related]
12. Restricting direct interaction of CDC37 with HSP90 does not compromise chaperoning of client proteins. Smith JR; de Billy E; Hobbs S; Powers M; Prodromou C; Pearl L; Clarke PA; Workman P Oncogene; 2015 Jan; 34(1):15-26. PubMed ID: 24292678 [TBL] [Abstract][Full Text] [Related]
13. Expression and purification of recombinant NRL-Hsp90α and Cdc37-CRL proteins for in vitro Hsp90/Cdc37 inhibitors screening. He J; Niu X; Hu C; Zhang H; Guo Y; Ge Y; Wang G; Jiang Y Protein Expr Purif; 2013 Nov; 92(1):119-27. PubMed ID: 24056254 [TBL] [Abstract][Full Text] [Related]
14. Differential Regulation of G1 CDK Complexes by the Hsp90-Cdc37 Chaperone System. Hallett ST; Pastok MW; Morgan RML; Wittner A; Blundell KLIM; Felletar I; Wedge SR; Prodromou C; Noble MEM; Pearl LH; Endicott JA Cell Rep; 2017 Oct; 21(5):1386-1398. PubMed ID: 29091774 [TBL] [Abstract][Full Text] [Related]
15. 17-AAG and 17-DMAG-induced inhibition of cell proliferation through B-Raf downregulation in WT B-Raf-expressing uveal melanoma cell lines. Babchia N; Calipel A; Mouriaux F; Faussat AM; Mascarelli F Invest Ophthalmol Vis Sci; 2008 Jun; 49(6):2348-56. PubMed ID: 18281615 [TBL] [Abstract][Full Text] [Related]
16. Targeting Cdc37 inhibits multiple signaling pathways and induces growth arrest in prostate cancer cells. Gray PJ; Stevenson MA; Calderwood SK Cancer Res; 2007 Dec; 67(24):11942-50. PubMed ID: 18089825 [TBL] [Abstract][Full Text] [Related]
17. Targeting HSP 90 induces apoptosis and inhibits critical survival and proliferation pathways in multiple myeloma. Khong T; Spencer A Mol Cancer Ther; 2011 Oct; 10(10):1909-17. PubMed ID: 21859842 [TBL] [Abstract][Full Text] [Related]
18. Discovery and Optimization of Small Molecules Targeting the Protein-Protein Interaction of Heat Shock Protein 90 (Hsp90) and Cell Division Cycle 37 as Orally Active Inhibitors for the Treatment of Colorectal Cancer. Wang L; Jiang J; Zhang L; Zhang Q; Zhou J; Li L; Xu X; You Q J Med Chem; 2020 Feb; 63(3):1281-1297. PubMed ID: 31935086 [TBL] [Abstract][Full Text] [Related]
19. Supervision of multiple signaling protein kinases by the CK2-Cdc37 couple, a possible novel cancer therapeutic target. Miyata Y; Nishida E Ann N Y Acad Sci; 2004 Dec; 1030():150-7. PubMed ID: 15659792 [TBL] [Abstract][Full Text] [Related]
20. Discovery of 18β-glycyrrhetinic acid conjugated aminobenzothiazole derivatives as Hsp90-Cdc37 interaction disruptors that inhibit cell migration and reverse drug resistance. Jin L; Huang R; Huang X; Zhang B; Ji M; Wang H Bioorg Med Chem; 2018 May; 26(8):1759-1775. PubMed ID: 29486954 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]