These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 218713)

  • 41. Use of calcium, potassium, and sodium lactates to control germination and outgrowth of Clostridium perfringens spores during chilling of injected pork.
    Reddy Velugoti P; Rajagopal L; Juneja V; Thippareddi H
    Food Microbiol; 2007; 24(7-8):687-94. PubMed ID: 17613365
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Chitosan inhibits enterotoxigenic Clostridium perfringens type A in growth medium and chicken meat.
    Alnoman M; Udompijitkul P; Sarker MR
    Food Microbiol; 2017 Jun; 64():15-22. PubMed ID: 28213020
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Effect of a small, acid-soluble spore protein from Clostridium perfringens on the resistance properties of Bacillus subtilis spores.
    Leyva-Illades JF; Setlow B; Sarker MR; Setlow P
    J Bacteriol; 2007 Nov; 189(21):7927-31. PubMed ID: 17766414
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Reversal of radiation-dependent heat sensitization of Clostridium perfringens spores.
    Gomez RF; Gombas DE; Herrero A
    Appl Environ Microbiol; 1980 Mar; 39(3):525-9. PubMed ID: 6247972
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Increased numbers of heat-resistnat spores produced by two strains of Clostridium perfringens bearing temperate phage s9.
    Stewart AW; Johnson MG
    J Gen Microbiol; 1977 Nov; 103(1):45-50. PubMed ID: 201726
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The role of surface charge in ionic germination of Clostridium perfringens spores.
    Ando Y; Tsuzuki T
    J Gen Microbiol; 1984 Feb; 130(2):267-73. PubMed ID: 6327879
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Germination response of spores of the pathogenic bacterium Clostridium perfringens and Clostridium difficile to cultured human epithelial cells.
    Paredes-Sabja D; Sarker MR
    Anaerobe; 2011 Apr; 17(2):78-84. PubMed ID: 21315167
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Inactivation and ultrastructure analysis of Bacillus spp. and Clostridium perfringens spores.
    Brantner CA; Hannah RM; Burans JP; Pope RK
    Microsc Microanal; 2014 Feb; 20(1):238-44. PubMed ID: 24503289
    [TBL] [Abstract][Full Text] [Related]  

  • 49. [Effects of gall powder on the spore-forming and enterotoxin-producing abilities of Clostridium perfringens].
    Akaeda H; Taniguti T
    Nihon Saikingaku Zasshi; 1987 May; 42(3):575-81. PubMed ID: 2889836
    [No Abstract]   [Full Text] [Related]  

  • 50. Studies on the bacterial spore coat 6 effects of alkali extraction on the spore of Bacillus thiaminolyticus.
    Minami J; Ichikawa T; Kondo M
    Microbios; 1977; 18(72):131-40. PubMed ID: 417231
    [TBL] [Abstract][Full Text] [Related]  

  • 51. [The effect of N,N'-bis(decyldimethyl)-1,6-hexane diammonium dibromide on vegetative cells and spores of type A Clostridium perfringens].
    Kallová J
    Cesk Epidemiol Mikrobiol Imunol; 1994 Mar; 43(1):16-20. PubMed ID: 8168161
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Apertures in the Clostridium sporogenes spore coat and exosporium align to facilitate emergence of the vegetative cell.
    Brunt J; Cross KL; Peck MW
    Food Microbiol; 2015 Oct; 51():45-50. PubMed ID: 26187826
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Stimulation of the onset of sporulation of Clostridium perfringens type A by netropsin and distamycin.
    Ryu S; Labbe RG
    Curr Microbiol; 1992 Oct; 25(4):183-7. PubMed ID: 1369407
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Effect of sublethal heat treatment on the later stage of germination-to-outgrowth of Clostridium perfringens spores.
    Sakanoue H; Yasugi M; Miyake M
    Microbiol Immunol; 2018 Jun; 62(6):418-424. PubMed ID: 29727026
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Behavior of Clostridium perfringens at low temperatures.
    de Jong AE; Rombouts FM; Beumer RR
    Int J Food Microbiol; 2004 Dec; 97(1):71-80. PubMed ID: 15527920
    [TBL] [Abstract][Full Text] [Related]  

  • 56. l-lysine (pH 6.0) induces germination of spores of Clostridium perfringens type F isolates carrying chromosomal or plasmid-borne enterotoxin gene.
    Banawas S; Sarker MR
    Microb Pathog; 2018 Oct; 123():227-232. PubMed ID: 30031038
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Growth/no growth boundary of Clostridium perfringens from spores in cooked meat: A logistic analysis.
    Huang L; Li C; Hwang CA
    Int J Food Microbiol; 2018 Feb; 266():257-266. PubMed ID: 29274481
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Ionic germination of spores of Clostridium perfringens type A.
    Ando Y
    Jpn J Microbiol; 1974 Nov; 18(6):433-9. PubMed ID: 4375727
    [No Abstract]   [Full Text] [Related]  

  • 59. Isolation and partial characterization of exosporium from spores of a highly sporogenic mutant of Clostridium botulinum type A.
    Takumi K; Kinouchi T; Kawata T
    Microbiol Immunol; 1979; 23(6):443-54. PubMed ID: 386051
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Effect of meat ingredients (sodium nitrite and erythorbate) and processing (vacuum storage and packaging atmosphere) on germination and outgrowth of Clostridium perfringens spores in ham during abusive cooling.
    Redondo-Solano M; Valenzuela-Martinez C; Cassada DA; Snow DD; Juneja VK; Burson DE; Thippareddi H
    Food Microbiol; 2013 Sep; 35(2):108-15. PubMed ID: 23664261
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.