BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

85 related articles for article (PubMed ID: 21871490)

  • 21. Light and electron microscopic assessment of progressive atrophy following moderate traumatic brain injury in the rat.
    Rodriguez-Paez AC; Brunschwig JP; Bramlett HM
    Acta Neuropathol; 2005 Jun; 109(6):603-16. PubMed ID: 15877231
    [TBL] [Abstract][Full Text] [Related]  

  • 22. An NMR metabolomic investigation of early metabolic disturbances following traumatic brain injury in a mammalian model.
    Viant MR; Lyeth BG; Miller MG; Berman RF
    NMR Biomed; 2005 Dec; 18(8):507-16. PubMed ID: 16177961
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cardiac magnetic resonance elastography. Initial results.
    Elgeti T; Rump J; Hamhaber U; Papazoglou S; Hamm B; Braun J; Sack I
    Invest Radiol; 2008 Nov; 43(11):762-72. PubMed ID: 18923255
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Diffusion and high resolution MRI of traumatic brain injury in rats: time course and correlation with histology.
    Albensi BC; Knoblach SM; Chew BG; O'Reilly MP; Faden AI; Pekar JJ
    Exp Neurol; 2000 Mar; 162(1):61-72. PubMed ID: 10716889
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Viscoelastic properties of liver measured by oscillatory rheometry and multifrequency magnetic resonance elastography.
    Klatt D; Friedrich C; Korth Y; Vogt R; Braun J; Sack I
    Biorheology; 2010; 47(2):133-41. PubMed ID: 20683156
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Assessment of cerebral blood flow and CO2 reactivity after controlled cortical impact by perfusion magnetic resonance imaging using arterial spin-labeling in rats.
    Forbes ML; Hendrich KS; Kochanek PM; Williams DS; Schiding JK; Wisniewski SR; Kelsey SF; DeKosky ST; Graham SH; Marion DW; Ho C
    J Cereb Blood Flow Metab; 1997 Aug; 17(8):865-74. PubMed ID: 9290584
    [TBL] [Abstract][Full Text] [Related]  

  • 27. TREMR: Table-resonance elastography with MR.
    Gallichan D; Robson MD; Bartsch A; Miller KL
    Magn Reson Med; 2009 Sep; 62(3):815-21. PubMed ID: 19585596
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Delayed Methylene Blue Improves Lesion Volume, Multi-Parametric Quantitative Magnetic Resonance Imaging Measurements, and Behavioral Outcome after Traumatic Brain Injury.
    Talley Watts L; Long JA; Boggs RC; Manga H; Huang S; Shen Q; Duong TQ
    J Neurotrauma; 2016 Jan; 33(2):194-202. PubMed ID: 25961471
    [TBL] [Abstract][Full Text] [Related]  

  • 29. High-strain-rate brain injury model using submerged acute rat brain tissue slices.
    Sarntinoranont M; Lee SJ; Hong Y; King MA; Subhash G; Kwon J; Moore DF
    J Neurotrauma; 2012 Jan; 29(2):418-29. PubMed ID: 21970544
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A longitudinal study of the mechanical properties of injured brain tissue in a mouse model.
    Feng Y; Gao Y; Wang T; Tao L; Qiu S; Zhao X
    J Mech Behav Biomed Mater; 2017 Jul; 71():407-415. PubMed ID: 28412646
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mechanical heterogeneity of the rat hippocampus measured by atomic force microscope indentation.
    Elkin BS; Azeloglu EU; Costa KD; Morrison B
    J Neurotrauma; 2007 May; 24(5):812-22. PubMed ID: 17518536
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Transcranial vibro-acoustography can detect traumatic brain injury, in-vivo: Preliminary studies.
    Suarez MW; Dever DD; Gu X; Ray Illian P; McClintic AM; Mehic E; Mourad PD
    Ultrasonics; 2015 Aug; 61():151-6. PubMed ID: 25964238
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mechanical properties of porcine brain tissue in vivo and ex vivo estimated by MR elastography.
    Guertler CA; Okamoto RJ; Schmidt JL; Badachhape AA; Johnson CL; Bayly PV
    J Biomech; 2018 Mar; 69():10-18. PubMed ID: 29395225
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Evaluation of renal parenchymal disease in a rat model with magnetic resonance elastography.
    Shah NS; Kruse SA; Lager DJ; Farell-Baril G; Lieske JC; King BF; Ehman RL
    Magn Reson Med; 2004 Jul; 52(1):56-64. PubMed ID: 15236367
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Magnetic resonance elastography methodology for the evaluation of tissue engineered construct growth.
    Curtis ET; Zhang S; Khalilzad-Sharghi V; Boulet T; Othman SF
    J Vis Exp; 2012 Feb; (60):. PubMed ID: 22349156
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Modeling neural injury in organotypic cultures by application of inertia-driven shear strain.
    Bottlang M; Sommers MB; Lusardi TA; Miesch JJ; Simon RP; Xiong ZG
    J Neurotrauma; 2007 Jun; 24(6):1068-77. PubMed ID: 17600521
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Frequency-dependent viscoelastic parameters of mouse brain tissue estimated by MR elastography.
    Clayton EH; Garbow JR; Bayly PV
    Phys Med Biol; 2011 Apr; 56(8):2391-406. PubMed ID: 21427486
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Intracranial biomechanics following cortical contusion in live rats.
    Alfasi AM; Shulyakov AV; Del Bigio MR
    J Neurosurg; 2013 Nov; 119(5):1255-62. PubMed ID: 24032707
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mechanical behavior of the hippocampus and corpus callosum: An attempt to reconcile ex vivo with in vivo and micro with macro properties.
    Bertalan G; Becker J; Tzschätzsch H; Morr A; Herthum H; Shahryari M; Greenhalgh RD; Guo J; Schröder L; Alzheimer C; Budday S; Franze K; Braun J; Sack I
    J Mech Behav Biomed Mater; 2023 Feb; 138():105613. PubMed ID: 36549250
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mechanical properties of murine hippocampal subregions investigated by atomic force microscopy and in vivo magnetic resonance elastography.
    Morr AS; Nowicki M; Bertalan G; Vieira Silva R; Infante Duarte C; Koch SP; Boehm-Sturm P; Krügel U; Braun J; Steiner B; Käs JA; Fuhs T; Sack I
    Sci Rep; 2022 Oct; 12(1):16723. PubMed ID: 36202964
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.