BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

74 related articles for article (PubMed ID: 21871492)

  • 21. Phase shift and correlation coefficient measurement of cerebral autoregulation during deep breathing in traumatic brain injury (TBI).
    Lewis PM; Rosenfeld JV; Diehl RR; Mehdorn HM; Lang EW
    Acta Neurochir (Wien); 2008 Feb; 150(2):139-46; discussion 146-7. PubMed ID: 18213440
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Continuous time-domain monitoring of cerebral autoregulation in neurocritical care.
    Zweifel C; Dias C; Smielewski P; Czosnyka M
    Med Eng Phys; 2014 May; 36(5):638-45. PubMed ID: 24703503
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Evaluation of a bedside monitor of regional CBF as a measure of CO2 reactivity in neurosurgical intensive care patients.
    Soukup J; Bramsiepe I; Brucke M; Sanchin L; Menzel M
    J Neurosurg Anesthesiol; 2008 Oct; 20(4):249-55. PubMed ID: 18812888
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Online assessment of brain tissue oxygen autoregulation in traumatic brain injury and subarachnoid hemorrhage.
    Soehle M; Jaeger M; Meixensberger J
    Neurol Res; 2003 Jun; 25(4):411-7. PubMed ID: 12870270
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [A study on shifts of cerebral autoregualtion following end-tidal CO2 by critical closing pressure].
    Gao QC; Chen XM; Chen YX; Huang RX
    Zhonghua Yi Xue Za Zhi; 2005 Jun; 85(22):1542-6. PubMed ID: 16179114
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [A study of regional cerebral blood flow before and after superficial temporal artery-to-middle cerebral artery anastomosis].
    Kubo N
    No Shinkei Geka; 1986 Dec; 14(13):1547-56. PubMed ID: 3102986
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Correlation of continuously monitored regional cerebral blood flow and brain tissue oxygen.
    Jaeger M; Soehle M; Schuhmann MU; Winkler D; Meixensberger J
    Acta Neurochir (Wien); 2005 Jan; 147(1):51-6; discussion 56. PubMed ID: 15565486
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The oxygen reactivity index and its relation to sensor technology in patients with severe brain lesions.
    Dengler J; Frenzel C; Vajkoczy P; Horn P; Wolf S
    Neurocrit Care; 2013 Aug; 19(1):74-8. PubMed ID: 22396192
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Brain tissue oxygen monitoring for assessment of autoregulation: preliminary results suggest a new hypothesis.
    Menzel M; Soukup J; Henze D; Clausen T; Marx T; Hillman A; Miko I; Grond S; Rieger A
    J Neurosurg Anesthesiol; 2003 Jan; 15(1):33-41. PubMed ID: 12499980
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Continuous time-domain analysis of cerebrovascular autoregulation using near-infrared spectroscopy.
    Brady KM; Lee JK; Kibler KK; Smielewski P; Czosnyka M; Easley RB; Koehler RC; Shaffner DH
    Stroke; 2007 Oct; 38(10):2818-25. PubMed ID: 17761921
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cerebral Autoregulation Is Impaired During Deep Hypothermia-A Porcine Multimodal Neuromonitoring Study.
    Gaasch M; Putzer G; Schiefecker AJ; Martini J; Strapazzon G; Ianosi B; Thome C; Paal P; Brugger H; Mair P; Helbok R
    Ther Hypothermia Temp Manag; 2020 Jun; 10(2):122-127. PubMed ID: 31364946
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Oxygen-based autoregulation indices associated with clinical outcomes and spreading depolarization in aSAH.
    Carlson AP; Jones T; Zhu Y; Desai M; Alsarah A; Shuttleworth CW
    medRxiv; 2024 May; ():. PubMed ID: 38798620
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A novel technique for monitoring of fast variations in brain oxygen tension using an uncoated fluorescence quenching probe (Foxy AL-300).
    Klein KU; Boehme S; Hartmann EK; Szczyrba M; David M; Markstaller K; Engelhard K
    J Neurosurg Anesthesiol; 2011 Oct; 23(4):341-6. PubMed ID: 21897296
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Strangulation injuries in children. Part 2. Cerebrovascular hemodynamics.
    Hanigan WC; Aldag J; Sabo RA; Rose J; Aaland M
    J Trauma; 1996 Jan; 40(1):73-7. PubMed ID: 8577003
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A novel use of transfer function estimation for early assessment of brain injury outcome.
    Svenkeson D; Sena B; Oishi M; Pappu S; Yonas H
    IEEE Trans Biomed Eng; 2014 Sep; 61(9):2413-21. PubMed ID: 24760897
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effects of cerebral perfusion pressure on regional cerebral blood flow in dogs with acute epidural hematoma: quantitative evaluation with contrast-enhanced ultrasound.
    Cheng H; Mao X; Hou Z; Xu J; Hao S; Li H; Liu B
    Oncotarget; 2017 Nov; 8(55):93373-93381. PubMed ID: 29212156
    [TBL] [Abstract][Full Text] [Related]  

  • 37. CrossTalk proposal: dynamic cerebral autoregulation should be quantified using spontaneous blood pressure fluctuations.
    Tzeng YC; Panerai RB
    J Physiol; 2018 Jan; 596(1):3-5. PubMed ID: 29207213
    [No Abstract]   [Full Text] [Related]  

  • 38. CrossTalk opposing view: dynamic cerebral autoregulation should be quantified using induced (rather than spontaneous) blood pressure fluctuations.
    Simpson D; Claassen J
    J Physiol; 2018 Jan; 596(1):7-9. PubMed ID: 29207208
    [No Abstract]   [Full Text] [Related]  

  • 39. Thermal method for continuous measurement of cerebral perfusion.
    Wei D; Saidel GM; Jones SC
    Med Biol Eng Comput; 1994 Sep; 32(5):481-8. PubMed ID: 7845063
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Can a critical lower threshold of cerebral perfusion be determined? A pilot observational study.
    Schöning M; Scheel P; Holzer M; Fretschner R; Will BE
    Neurology; 2002 Jun; 58(12):1860-1. PubMed ID: 12084894
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.