These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

445 related articles for article (PubMed ID: 21871571)

  • 1. Learning to play a melody: an fMRI study examining the formation of auditory-motor associations.
    Chen JL; Rae C; Watkins KE
    Neuroimage; 2012 Jan; 59(2):1200-8. PubMed ID: 21871571
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Repetition suppression in auditory-motor regions to pitch and temporal structure in music.
    Brown RM; Chen JL; Hollinger A; Penhune VB; Palmer C; Zatorre RJ
    J Cogn Neurosci; 2013 Feb; 25(2):313-28. PubMed ID: 23163413
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interactions between auditory and dorsal premotor cortex during synchronization to musical rhythms.
    Chen JL; Zatorre RJ; Penhune VB
    Neuroimage; 2006 Oct; 32(4):1771-81. PubMed ID: 16777432
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Learning piano melodies in visuo-motor or audio-motor training conditions and the neural correlates of their cross-modal transfer.
    Engel A; Bangert M; Horbank D; Hijmans BS; Wilkens K; Keller PE; Keysers C
    Neuroimage; 2012 Nov; 63(2):966-78. PubMed ID: 22484310
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cross-modal plasticity of the motor cortex while listening to a rehearsed musical piece.
    D'Ausilio A; Altenmüller E; Olivetti Belardinelli M; Lotze M
    Eur J Neurosci; 2006 Aug; 24(3):955-8. PubMed ID: 16930423
    [TBL] [Abstract][Full Text] [Related]  

  • 6. FMRI/ERP of musical syntax: comparison of melodies and unstructured note sequences.
    Minati L; Rosazza C; D'Incerti L; Pietrocini E; Valentini L; Scaioli V; Loveday C; Bruzzone MG
    Neuroreport; 2008 Sep; 19(14):1381-5. PubMed ID: 18766016
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A rapid sound-action association effect in human insular cortex.
    Mutschler I; Schulze-Bonhage A; Glauche V; Demandt E; Speck O; Ball T
    PLoS One; 2007 Feb; 2(2):e259. PubMed ID: 17327919
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A network for audio-motor coordination in skilled pianists and non-musicians.
    Baumann S; Koeneke S; Schmidt CF; Meyer M; Lutz K; Jancke L
    Brain Res; 2007 Aug; 1161():65-78. PubMed ID: 17603027
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neural network retuning and neural predictors of learning success associated with cello training.
    Wollman I; Penhune V; Segado M; Carpentier T; Zatorre RJ
    Proc Natl Acad Sci U S A; 2018 Jun; 115(26):E6056-E6064. PubMed ID: 29891670
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The power of listening: auditory-motor interactions in musical training.
    Lahav A; Boulanger A; Schlaug G; Saltzman E
    Ann N Y Acad Sci; 2005 Dec; 1060():189-94. PubMed ID: 16597764
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cortical structure predicts success in performing musical transformation judgments.
    Foster NE; Zatorre RJ
    Neuroimage; 2010 Oct; 53(1):26-36. PubMed ID: 20600982
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Listening to musical rhythms recruits motor regions of the brain.
    Chen JL; Penhune VB; Zatorre RJ
    Cereb Cortex; 2008 Dec; 18(12):2844-54. PubMed ID: 18388350
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Activation and connectivity patterns of the presupplementary and dorsal premotor areas during free improvisation of melodies and rhythms.
    de Manzano Ö; Ullén F
    Neuroimage; 2012 Oct; 63(1):272-80. PubMed ID: 22732560
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dissociation between melodic and rhythmic processing during piano performance from musical scores.
    Bengtsson SL; Ullén F
    Neuroimage; 2006 Mar; 30(1):272-84. PubMed ID: 16246591
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neural basis of music imagery and the effect of musical expertise.
    Herholz SC; Lappe C; Knief A; Pantev C
    Eur J Neurosci; 2008 Dec; 28(11):2352-60. PubMed ID: 19046375
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Moving on time: brain network for auditory-motor synchronization is modulated by rhythm complexity and musical training.
    Chen JL; Penhune VB; Zatorre RJ
    J Cogn Neurosci; 2008 Feb; 20(2):226-39. PubMed ID: 18275331
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Understanding the neural computations of arbitrary visuomotor learning through fMRI and associative learning theory.
    Brovelli A; Laksiri N; Nazarian B; Meunier M; Boussaoud D
    Cereb Cortex; 2008 Jul; 18(7):1485-95. PubMed ID: 18033767
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Distinct temporospatial interhemispheric interactions in the human primary and premotor cortex during movement preparation.
    Liuzzi G; Hörniss V; Hoppe J; Heise K; Zimerman M; Gerloff C; Hummel FC
    Cereb Cortex; 2010 Jun; 20(6):1323-31. PubMed ID: 19906807
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reading speech from still and moving faces: the neural substrates of visible speech.
    Calvert GA; Campbell R
    J Cogn Neurosci; 2003 Jan; 15(1):57-70. PubMed ID: 12590843
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Encoding and recall of finger sequences in experienced pianists compared with musically naïve controls: a combined behavioral and functional imaging study.
    Pau S; Jahn G; Sakreida K; Domin M; Lotze M
    Neuroimage; 2013 Jan; 64():379-87. PubMed ID: 22982586
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.