These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 21871572)

  • 1. Electrophysiological signatures of intentional social coordination in the 10-12 Hz range.
    Naeem M; Prasad G; Watson DR; Kelso JA
    Neuroimage; 2012 Jan; 59(2):1795-803. PubMed ID: 21871572
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional dissociation of brain rhythms in social coordination.
    Naeem M; Prasad G; Watson DR; Kelso JA
    Clin Neurophysiol; 2012 Sep; 123(9):1789-97. PubMed ID: 22425484
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Alpha band signatures of social synchrony.
    Fitzpatrick P; Mitchell T; Schmidt RC; Kennedy D; Frazier JA
    Neurosci Lett; 2019 Apr; 699():24-30. PubMed ID: 30684678
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Brain Network Connectivity and Topological Analysis During Voluntary Arm Movements.
    Storti SF; Formaggio E; Manganotti P; Menegaz G
    Clin EEG Neurosci; 2016 Oct; 47(4):276-290. PubMed ID: 26251456
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mirror-neuron system recruitment by action observation: effects of focal brain damage on mu suppression.
    Frenkel-Toledo S; Bentin S; Perry A; Liebermann DG; Soroker N
    Neuroimage; 2014 Feb; 87():127-37. PubMed ID: 24140938
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sensory-motor synchronization in the brain corresponds to behavioral synchronization between individuals.
    Kawasaki M; Kitajo K; Yamaguchi Y
    Neuropsychologia; 2018 Oct; 119():59-67. PubMed ID: 30055179
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spatiotemporal reorganization of electrical activity in the human brain associated with a timing transition in rhythmic auditory-motor coordination.
    Mayville JM; Bressler SL; Fuchs A; Kelso JA
    Exp Brain Res; 1999 Aug; 127(4):371-81. PubMed ID: 10480272
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Watching object related movements modulates mirror-like activity in parietal brain regions.
    Wriessnegger SC; Leeb R; Kaiser V; Neuper C; Müller-Putz GR
    Clin Neurophysiol; 2013 Aug; 124(8):1596-604. PubMed ID: 23540418
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Observational learning of new movement sequences is reflected in fronto-parietal coherence.
    van der Helden J; van Schie HT; Rombouts C
    PLoS One; 2010 Dec; 5(12):e14482. PubMed ID: 21217815
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exploration of computational methods for classification of movement intention during human voluntary movement from single trial EEG.
    Bai O; Lin P; Vorbach S; Li J; Furlani S; Hallett M
    Clin Neurophysiol; 2007 Dec; 118(12):2637-55. PubMed ID: 17967559
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dysfunction of the Human Mirror Neuron System in Ideomotor Apraxia: Evidence from Mu Suppression.
    Frenkel-Toledo S; Liebermann DG; Bentin S; Soroker N
    J Cogn Neurosci; 2016 Jun; 28(6):775-91. PubMed ID: 26942323
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Post-switching beta synchronization reveals concomitant sensory reafferences and active inhibition processes.
    Sallard E; Tallet J; Thut G; Deiber MP; Barral J
    Behav Brain Res; 2014 Sep; 271():365-73. PubMed ID: 24971691
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phase synchronization for the recognition of mental tasks in a brain-computer interface.
    Gysels E; Celka P
    IEEE Trans Neural Syst Rehabil Eng; 2004 Dec; 12(4):406-15. PubMed ID: 15614996
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Brain activity preceding a 2D manual catching task.
    Tombini M; Zappasodi F; Zollo L; Pellegrino G; Cavallo G; Tecchio F; Guglielmelli E; Rossini PM
    Neuroimage; 2009 Oct; 47(4):1735-46. PubMed ID: 19389476
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stepping in time: Alpha-mu and beta oscillations during a walking synchronization task.
    Scanlon JEM; Jacobsen NSJ; Maack MC; Debener S
    Neuroimage; 2022 Jun; 253():119099. PubMed ID: 35301131
    [TBL] [Abstract][Full Text] [Related]  

  • 16. EEG coherence changes between right and left motor cortical areas during voluntary muscular contraction.
    Abdul-latif AA; Cosic I; Kumar DK; Polus B; Pah N; Djuwari D
    Australas Phys Eng Sci Med; 2004 Mar; 27(1):11-5. PubMed ID: 15156702
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mirror activity in the human brain while observing hand movements: a comparison between EEG desynchronization in the mu-range and previous fMRI results.
    Perry A; Bentin S
    Brain Res; 2009 Jul; 1282():126-32. PubMed ID: 19500557
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cortical imaging of event-related (de)synchronization during online control of brain-computer interface using minimum-norm estimates in frequency domain.
    Yuan H; Doud A; Gururajan A; He B
    IEEE Trans Neural Syst Rehabil Eng; 2008 Oct; 16(5):425-31. PubMed ID: 18990646
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simultaneous EEG 10 Hz desynchronization and 40 Hz synchronization during finger movements.
    Pfurtscheller G; Neuper C
    Neuroreport; 1992 Dec; 3(12):1057-60. PubMed ID: 1493217
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamics of the EEG power in the frequency and spatial domains during observation and execution of manual movements.
    Frenkel-Toledo S; Bentin S; Perry A; Liebermann DG; Soroker N
    Brain Res; 2013 May; 1509():43-57. PubMed ID: 23500633
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.