These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 21871651)

  • 1. Apatite ore mine tailings as an amendment for remediation of a lead-contaminated shooting range soil.
    Venäläinen SH
    Sci Total Environ; 2011 Oct; 409(21):4628-34. PubMed ID: 21871651
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis and characterization of a new class of stabilized apatite nanoparticles and applying the particles to in situ Pb immobilization in a fire-range soil.
    Liu R; Zhao D
    Chemosphere; 2013 Apr; 91(5):594-601. PubMed ID: 23336925
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative value of phosphate sources on the immobilization of lead, and leaching of lead and phosphorus in lead contaminated soils.
    Park JH; Bolan N; Megharaj M; Naidu R
    Sci Total Environ; 2011 Jan; 409(4):853-60. PubMed ID: 21130488
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of organic amendments on the mobility of Pb and Zn from mine tailings added to semi-arid soils.
    Barajas-Aceves M; Rodríguez-Vázquez R
    J Environ Sci Health B; 2013; 48(3):226-36. PubMed ID: 23356345
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Application of biochar on mine tailings: effects and perspectives for land reclamation.
    Fellet G; Marchiol L; Delle Vedove G; Peressotti A
    Chemosphere; 2011 May; 83(9):1262-7. PubMed ID: 21501855
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Environmental monitoring of the role of phosphate compounds in enhancing immobilization and reducing bioavailability of lead in contaminated soils.
    Park JH; Bolan NS; Chung JW; Naidu R; Megharaj M
    J Environ Monit; 2011 Aug; 13(8):2234-42. PubMed ID: 21748178
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Long-term efficiency of soil stabilization with apatite and Slovakite: the impact of two earthworm species (Lumbricus terrestris and Dendrobaena veneta) on lead bioaccessibility and soil functioning.
    Tica D; Udovic M; Lestan D
    Chemosphere; 2013 Mar; 91(1):1-6. PubMed ID: 23219407
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Significance of autochthonous Bacillus sp. KK1 on biomineralization of lead in mine tailings.
    Govarthanan M; Lee KJ; Cho M; Kim JS; Kamala-Kannan S; Oh BT
    Chemosphere; 2013 Feb; 90(8):2267-72. PubMed ID: 23149181
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficiency of liming in controlling the mobility of lead in shooting range soils as assessed by different experimental approaches.
    Levonmäki M; Hartikainen H
    Sci Total Environ; 2007 Dec; 388(1-3):1-7. PubMed ID: 17900662
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reclamation of a mine contaminated soil using biologically reactive organic matrices.
    Alvarenga P; Gonçalves AP; Fernandes RM; de Varennes A; Duarte E; Cunha-Queda AC; Vallini G
    Waste Manag Res; 2009 Mar; 27(2):101-11. PubMed ID: 19244409
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced transformation of lead speciation in rhizosphere soils using phosphorus amendments and phytostabilization: an x-ray absorption fine structure spectroscopy investigation.
    Hashimoto Y; Takaoka M; Shiota K
    J Environ Qual; 2011; 40(3):696-703. PubMed ID: 21546656
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamics of lead (Pb) in different soil conditions.
    Somasundaram J; Krishnasamy R; Mahimairaja S; Savithri P
    J Environ Sci Eng; 2006 Apr; 48(2):123-8. PubMed ID: 17913189
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessment of chemical, biochemical and ecotoxicological aspects in a mine soil amended with sludge of either urban or industrial origin.
    Alvarenga P; Palma P; Gonçalves AP; Baião N; Fernandes RM; de Varennes A; Vallini G; Duarte E; Cunha-Queda AC
    Chemosphere; 2008 Aug; 72(11):1774-81. PubMed ID: 18547605
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sorption of dissolved lead from shooting range soils using hydroxyapatite amendments synthesized from industrial byproducts as affected by varying pH conditions.
    Hashimoto Y; Taki T; Sato T
    J Environ Manage; 2009 Apr; 90(5):1782-9. PubMed ID: 19111967
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Labile pools of Pb in vegetable-growing soils investigated by an isotope dilution method and its influence on soil pH.
    Xie H; Huang ZY; Cao YL; Cai C; Zeng XC; Li J
    J Environ Monit; 2012 Aug; 14(8):2230-7. PubMed ID: 22772653
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impacts of chemical amendment and plant growth on lead speciation and enzyme activities in a shooting range soil: an x-ray absorption fine structure investigation.
    Hashimoto Y; Matsufuru H; Takaoka M; Tanida H; Sato T
    J Environ Qual; 2009; 38(4):1420-8. PubMed ID: 19465717
    [TBL] [Abstract][Full Text] [Related]  

  • 17. EXAFS speciation and phytoavailability of Pb in a contaminated soil amended with compost and gypsum.
    Hashimoto Y; Yamaguchi N; Takaoka M; Shiota K
    Sci Total Environ; 2011 Feb; 409(5):1001-7. PubMed ID: 21146856
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of two sequential extraction procedures for heavy metal partitioning in mine tailings.
    Anju M; Banerjee DK
    Chemosphere; 2010 Mar; 78(11):1393-402. PubMed ID: 20106503
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Immobilization of potentially toxic metals using different soil amendments.
    Tica D; Udovic M; Lestan D
    Chemosphere; 2011 Oct; 85(4):577-83. PubMed ID: 21767865
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Effect of chlorine and phosphorus on water soluble and exchangeable lead in a soil contaminated by lead and zinc mining tailings].
    Wang BL; Xie ZM; Li J; Wu WH; Jiang JT
    Huan Jing Ke Xue; 2008 Jun; 29(6):1724-8. PubMed ID: 18763530
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.