BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

676 related articles for article (PubMed ID: 21871718)

  • 1. Adsorption of volatile organic compounds by metal-organic frameworks MIL-101: influence of molecular size and shape.
    Yang K; Sun Q; Xue F; Lin D
    J Hazard Mater; 2011 Nov; 195():124-31. PubMed ID: 21871718
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adsorption behaviors of volatile organic compounds (VOCs) on porous clay heterostructures (PCH).
    Qu F; Zhu L; Yang K
    J Hazard Mater; 2009 Oct; 170(1):7-12. PubMed ID: 19505753
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Probing the adsorption characteristic of metal-organic framework MIL-101 for volatile organic compounds by quartz crystal microbalance.
    Huang CY; Song M; Gu ZY; Wang HF; Yan XP
    Environ Sci Technol; 2011 May; 45(10):4490-6. PubMed ID: 21500773
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Study on the copper(II)-doped MIL-101(Cr) and its performance in VOCs adsorption.
    Wang D; Wu G; Zhao Y; Cui L; Shin CH; Ryu MH; Cai J
    Environ Sci Pollut Res Int; 2018 Oct; 25(28):28109-28119. PubMed ID: 30069779
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adsorptive removal of naproxen and clofibric acid from water using metal-organic frameworks.
    Hasan Z; Jeon J; Jhung SH
    J Hazard Mater; 2012 Mar; 209-210():151-7. PubMed ID: 22277335
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of metal organic fromwork-199 immobilized zeolite foam for adsorption of common indoor VOCs.
    Saini VK; Pires J
    J Environ Sci (China); 2017 May; 55():321-330. PubMed ID: 28477827
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Separation of styrene and ethylbenzene on metal-organic frameworks: analogous structures with different adsorption mechanisms.
    Maes M; Vermoortele F; Alaerts L; Couck S; Kirschhock CE; Denayer JF; De Vos DE
    J Am Chem Soc; 2010 Nov; 132(43):15277-85. PubMed ID: 20942418
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Trends in the adsorption of volatile organic compounds in a large-pore metal-organic framework, IRMOF-1.
    Luebbers MT; Wu T; Shen L; Masel RI
    Langmuir; 2010 Jul; 26(13):11319-29. PubMed ID: 20476773
    [TBL] [Abstract][Full Text] [Related]  

  • 9. BTX abatement using Chilean natural zeolite: the role of Brønsted acid sites.
    Alejandro S; Valdés H; Manero MH; Zaror CA
    Water Sci Technol; 2012; 66(8):1759-65. PubMed ID: 22907462
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Removal of benzene and methyl ethyl ketone vapor: comparison of hypercrosslinked polymeric adsorbent with activated carbon.
    Long C; Li Y; Yu W; Li A
    J Hazard Mater; 2012 Feb; 203-204():251-6. PubMed ID: 22204838
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced Adsorption of Aromatic Volatile Organic Compounds on a Perchloro Covalent Triazine Framework through Multiple Intermolecular Interactions.
    Wen S; Shen Y; Wen B; Wu S; Gu J; Zhang Z; Wei Y; Jiao T; Yu Q; Deng Q; Chen Y; Zhao Y
    Macromol Rapid Commun; 2023 Jul; 44(13):e2200974. PubMed ID: 37153967
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chemically activated hydrochar as an effective adsorbent for volatile organic compounds (VOCs).
    Zhang X; Gao B; Fang J; Zou W; Dong L; Cao C; Zhang J; Li Y; Wang H
    Chemosphere; 2019 Mar; 218():680-686. PubMed ID: 30504043
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adsorption performance and kinetic study of hierarchical porous Fe-based MOFs for toluene removal.
    Ma X; Wang W; Sun C; Li H; Sun J; Liu X
    Sci Total Environ; 2021 Nov; 793():148622. PubMed ID: 34328958
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surface modification of coconut shell based activated carbon for the improvement of hydrophobic VOC removal.
    Li L; Liu S; Liu J
    J Hazard Mater; 2011 Aug; 192(2):683-90. PubMed ID: 21683520
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Framework breathing in the vapour-phase adsorption and separation of xylene isomers with the metal-organic framework MIL-53.
    Finsy V; Kirschhock CE; Vedts G; Maes M; Alaerts L; De Vos DE; Baron GV; Denayer JF
    Chemistry; 2009 Aug; 15(31):7724-31. PubMed ID: 19551773
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tuning the Hierarchical Pore Structure and the Metal Site in a Metal-Organic Framework Derivative to Unravel the Mechanism for the Adsorption of Different Volatile Organic Compounds.
    Qin J; Yang J; Huang H; Fu M; Ye D; Hu Y
    Environ Sci Technol; 2023 Oct; 57(41):15703-15714. PubMed ID: 37796655
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metal-organic framework MIL-101(Cr) for high-performance liquid chromatographic separation of substituted aromatics.
    Yang CX; Yan XP
    Anal Chem; 2011 Sep; 83(18):7144-50. PubMed ID: 21809852
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Novel adsorbent based on multi-walled carbon nanotubes bonding on the external surface of porous silica gel particulates for trapping volatile organic compounds.
    Wang L; Liu J; Zhao P; Ning Z; Fan H
    J Chromatogr A; 2010 Sep; 1217(37):5741-5. PubMed ID: 20692664
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Performance evaluation of activated carbon with different pore sizes and functional groups for VOC adsorption by molecular simulation.
    An Y; Fu Q; Zhang D; Wang Y; Tang Z
    Chemosphere; 2019 Jul; 227():9-16. PubMed ID: 30981100
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Carbon nanotube sponges as an enrichment material for aromatic volatile organic compounds.
    Jang Y; Bang J; Seon YS; You DW; Oh JS; Jung KW
    J Chromatogr A; 2020 Apr; 1617():460840. PubMed ID: 31948724
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 34.