These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 21871724)

  • 1. Degradation and formation of wood odorant β-cyclocitral during permanganate oxidation.
    Zhang KJ; Gao NY; Yen HK; Chiu YT; Lin TF
    J Hazard Mater; 2011 Oct; 194():362-8. PubMed ID: 21871724
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characteristic oxidation behavior of β-cyclocitral from the cyanobacterium Microcystis.
    Tomita K; Hasegawa M; Arii S; Tsuji K; Bober B; Harada K
    Environ Sci Pollut Res Int; 2016 Jun; 23(12):11998-2006. PubMed ID: 26961531
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Production of β-Cyclocitral and Its Precursor β-Carotene in
    Wang X; Zhu Y; Hou D; Teng F; Cai Z; Tao Y
    Toxins (Basel); 2022 Mar; 14(3):. PubMed ID: 35324698
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetics of cell lysis for Microcystis aeruginosa and Nitzschia palea in the exposure to β-cyclocitral.
    Chang DW; Hsieh ML; Chen YM; Lin TF; Chang JS
    J Hazard Mater; 2011 Jan; 185(2-3):1214-20. PubMed ID: 21051144
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Degradation kinetics and pathways of β-cyclocitral and β-ionone during UV photolysis and UV/chlorination reactions.
    Kim T; Kim TK; Zoh KD
    J Environ Manage; 2019 Jun; 239():8-16. PubMed ID: 30877971
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of high light and temperature on Microcystis aeruginosa cell growth and β-cyclocitral emission.
    Zheng T; Zhou M; Yang L; Wang Y; Wang Y; Meng Y; Liu J; Zuo Z
    Ecotoxicol Environ Saf; 2020 Apr; 192():110313. PubMed ID: 32066007
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analytical Technique Optimization on the Detection of β-cyclocitral in
    Yamashita R; Bober B; Kanei K; Arii S; Tsuji K; Harada KI
    Molecules; 2020 Feb; 25(4):. PubMed ID: 32075007
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of the kinetic oxidation of aqueous volatile organic compounds by permanganate.
    Mahmoodlu MG; Hassanizadeh SM; Hartog N
    Sci Total Environ; 2014 Jul; 485-486():755-763. PubMed ID: 24290436
    [TBL] [Abstract][Full Text] [Related]  

  • 9. β-Cyclocitral and derivatives: Emerging molecular signals serving multiple biological functions.
    Havaux M
    Plant Physiol Biochem; 2020 Oct; 155():35-41. PubMed ID: 32738580
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinetics and mechanism for degradation of dichlorvos by permanganate in drinking water treatment.
    Liu C; Qiang Z; Adams C; Tian F; Zhang T
    Water Res; 2009 Aug; 43(14):3435-42. PubMed ID: 19515397
    [TBL] [Abstract][Full Text] [Related]  

  • 11. β-cyclocitral, a grazer defence signal unique to the cyanobacterium Microcystis.
    Jüttner F; Watson SB; von Elert E; Köster O
    J Chem Ecol; 2010 Dec; 36(12):1387-97. PubMed ID: 21072572
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Influence of pH on Kinetics of Anilines Oxidation by Permanganate].
    Wang H; Sun B; Guan XH
    Huan Jing Ke Xue; 2016 Feb; 37(2):588-94. PubMed ID: 27363148
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinetic and Mechanistic Aspects of the Reactions of Iodide and Hypoiodous Acid with Permanganate: Oxidation and Disproportionation.
    Zhao X; Salhi E; Liu H; Ma J; von Gunten U
    Environ Sci Technol; 2016 Apr; 50(8):4358-65. PubMed ID: 27003721
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of typical taste and odor compounds formed by Microcystis aeruginosa.
    Zhang K; Lin TF; Zhang T; Li C; Gao N
    J Environ Sci (China); 2013 Aug; 25(8):1539-48. PubMed ID: 24520691
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ru(III) catalyzed permanganate oxidation of aniline at environmentally relevant pH.
    Zhang J; Zhang Y; Wang H; Guan X
    J Environ Sci (China); 2014 Jul; 26(7):1395-402. PubMed ID: 25079987
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oxidation of non-steroidal anti-inflammatory drugs with aqueous permanganate.
    Rodríguez-Álvarez T; Rodil R; Quintana JB; Triñanes S; Cela R
    Water Res; 2013 Jun; 47(9):3220-30. PubMed ID: 23582668
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surfactant-enhanced oxidation of trichloroethylene by permanganate--proof of concept.
    Li Z
    Chemosphere; 2004 Jan; 54(3):419-23. PubMed ID: 14575755
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of different cultivation conditions on the production of β-cyclocitral and β-ionone in Microcystis aeruginosa.
    Moretto JAS; de Freitas PNN; de Almeida ÉC; Altarugio LM; da Silva SV; de Fátima Fiore M; Pinto E
    BMC Microbiol; 2022 Mar; 22(1):78. PubMed ID: 35321650
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetics of the oxidation of cylindrospermopsin and anatoxin-a with chlorine, monochloramine and permanganate.
    Rodríguez E; Sordo A; Metcalf JS; Acero JL
    Water Res; 2007 May; 41(9):2048-56. PubMed ID: 17353030
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A long-term bench-scale investigation of permanganate consumption by aquifer materials.
    Xu X; Thomson NR
    J Contam Hydrol; 2009 Nov; 110(3-4):73-86. PubMed ID: 19818529
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.