These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
76 related articles for article (PubMed ID: 21871729)
1. Screening evaluation of the ecotoxicity and genotoxicity of soils contaminated with organic and inorganic nanoparticles: the role of ageing. Pereira R; Rocha-Santos TA; Antunes FE; Rasteiro MG; Ribeiro R; Gonçalves F; Soares AM; Lopes I J Hazard Mater; 2011 Oct; 194():345-54. PubMed ID: 21871729 [TBL] [Abstract][Full Text] [Related]
2. Toxicity and genotoxicity of organic and inorganic nanoparticles to the bacteria Vibrio fischeri and Salmonella typhimurium. Lopes I; Ribeiro R; Antunes FE; Rocha-Santos TA; Rasteiro MG; Soares AM; Gonçalves F; Pereira R Ecotoxicology; 2012 Apr; 21(3):637-48. PubMed ID: 22314390 [TBL] [Abstract][Full Text] [Related]
3. Impact of organic and inorganic nanomaterials in the soil microbial community structure. Nogueira V; Lopes I; Rocha-Santos T; Santos AL; Rasteiro GM; Antunes F; Gonçalves F; Soares AM; Cunha A; Almeida A; Gomes NC; Pereira R Sci Total Environ; 2012 May; 424():344-50. PubMed ID: 22425277 [TBL] [Abstract][Full Text] [Related]
4. Assessment of the effects of Cr, Cu, Ni and Pb soil contamination by ecotoxicological tests. Maisto G; Manzo S; De Nicola F; Carotenuto R; Rocco A; Alfani A J Environ Monit; 2011 Nov; 13(11):3049-56. PubMed ID: 21918769 [TBL] [Abstract][Full Text] [Related]
5. Assessment of the water-extractable genotoxic potential of soil samples from contaminated sites. Ehrlichmann H; Dott W; Eisentraeger A Ecotoxicol Environ Saf; 2000 May; 46(1):73-80. PubMed ID: 10805996 [TBL] [Abstract][Full Text] [Related]
6. Characterization of polar metabolites and evaluation of their potential toxicity in hydrocarbon contaminated Antarctic soil elutriates. Pudasaini S; Wilkins D; Adler L; Hince G; Spedding T; King C; Ferrari B Sci Total Environ; 2019 Nov; 689():390-397. PubMed ID: 31277006 [TBL] [Abstract][Full Text] [Related]
7. Evaluation of the toxicity of two soils from Jales Mine (Portugal) using aquatic bioassays. Loureiro S; Ferreira AL; Soares AM; Nogueira AJ Chemosphere; 2005 Oct; 61(2):168-77. PubMed ID: 16084560 [TBL] [Abstract][Full Text] [Related]
8. Distillation fraction-specific ecotoxicological evaluation of a paraffin-rich crude oil. Erlacher E; Loibner AP; Kendler R; Scherr KE Environ Pollut; 2013 Mar; 174():236-43. PubMed ID: 23287074 [TBL] [Abstract][Full Text] [Related]
9. Cellular uptake and mutagenic potential of metal oxide nanoparticles in bacterial cells. Kumar A; Pandey AK; Singh SS; Shanker R; Dhawan A Chemosphere; 2011 May; 83(8):1124-32. PubMed ID: 21310462 [TBL] [Abstract][Full Text] [Related]
10. Toxicity assessment of contaminated soils from an antitank firing range. Robidoux PY; Gong P; Sarrazin M; Bardai G; Paquet L; Hawari J; Dubois C; Sunahara GI Ecotoxicol Environ Saf; 2004 Jul; 58(3):300-13. PubMed ID: 15223256 [TBL] [Abstract][Full Text] [Related]
11. Prediction of Cd and Pb toxicity to Vibrio fischeri using biotic ligand-based models in soil. An J; Jeong S; Moon HS; Jho EH; Nam K J Hazard Mater; 2012 Feb; 203-204():69-76. PubMed ID: 22197563 [TBL] [Abstract][Full Text] [Related]
12. Bioassays for evaluating the water-extractable genotoxic and toxic potential of soils polluted by metal smelters. Vidic T; Lah B; Berden-Zrimec M; Marinsek-Logar R Environ Toxicol; 2009 Oct; 24(5):472-83. PubMed ID: 18973278 [TBL] [Abstract][Full Text] [Related]
13. Impact of organic nano-vesicles in soil: The case of sodium dodecyl sulphate/didodecyl dimethylammonium bromide. Gavina A; Bouguerra S; Lopes I; Marques CR; Rasteiro MG; Antunes F; Rocha-Santos T; Pereira R Sci Total Environ; 2016 Mar; 547():413-421. PubMed ID: 26795542 [TBL] [Abstract][Full Text] [Related]
14. Rapid screening for soil ecotoxicity with a battery of luminescent bacteria tests. Heinlaan M; Kahru A; Kasemets K; Kurvet I; Waterlot C; Sepp K; Dubourguier HC; Douay F Altern Lab Anim; 2007 Mar; 35(1):101-10. PubMed ID: 17411358 [TBL] [Abstract][Full Text] [Related]
15. Mutagenicity of surface soil from residential areas in Kyoto city, Japan, and identification of major mutagens. Watanabe T; Takahashi K; Konishi E; Hoshino Y; Hasei T; Asanoma M; Hirayama T; Wakabayashi K Mutat Res; 2008 Jan; 649(1-2):201-12. PubMed ID: 17964847 [TBL] [Abstract][Full Text] [Related]
16. Identification of 1,6- and 1,8-dinitropyrene isomers as major mutagens in organic extracts of soil from Osaka, Japan. Watanabe T; Ishida S; Minami H; Kasai T; Ogawa S; Wakabayashi K; Hirayama T Chem Res Toxicol; 1998 Dec; 11(12):1501-7. PubMed ID: 9860494 [TBL] [Abstract][Full Text] [Related]
17. Occurrence and origin of mutagenicity in soil and water environment. Watanabe T; Ohe T; Hirayama T Environ Sci; 2005; 12(6):325-46. PubMed ID: 16609672 [TBL] [Abstract][Full Text] [Related]
18. Genotoxic and mutagenic potential of agricultural soil irrigated with tannery effluents at Jajmau (Kanpur), India. Alam MZ; Ahmad S; Malik A Arch Environ Contam Toxicol; 2009 Oct; 57(3):463-76. PubMed ID: 19153791 [TBL] [Abstract][Full Text] [Related]
19. Use of bioassays for assessment of water-extractable ecotoxic potential of soils. Maxam G; Rila JP; Dott W; Eisentraeger A Ecotoxicol Environ Saf; 2000 Mar; 45(3):240-6. PubMed ID: 10702342 [TBL] [Abstract][Full Text] [Related]
20. Applicability of the bioluminescence inhibition test in the 96-well microplate format for PAH-solutions and elutriates of PAH-contaminated soils. Hirmann D; Loibner AP; Braun R; Szolar OH Chemosphere; 2007 Apr; 67(6):1236-42. PubMed ID: 17169401 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]