BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 21871872)

  • 21. Inhibition of cyclooxygenase-2 protects motor neurons in an organotypic model of amyotrophic lateral sclerosis.
    Drachman DB; Rothstein JD
    Ann Neurol; 2000 Nov; 48(5):792-5. PubMed ID: 11079544
    [TBL] [Abstract][Full Text] [Related]  

  • 22. FAC1 expression and localization in motor neurons of developing, adult, and amyotrophic lateral sclerosis spinal cord.
    Mu X; Springer JE; Bowser R
    Exp Neurol; 1997 Jul; 146(1):17-24. PubMed ID: 9225734
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Excitotoxicity in ALS: Overstimulation, or overreaction?
    King AE; Woodhouse A; Kirkcaldie MT; Vickers JC
    Exp Neurol; 2016 Jan; 275 Pt 1():162-71. PubMed ID: 26584004
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Oxidative and excitotoxic insults exert differential effects on spinal motoneurons and astrocytic glutamate transporters: Implications for the role of astrogliosis in amyotrophic lateral sclerosis.
    Zagami CJ; Beart PM; Wallis N; Nagley P; O'Shea RD
    Glia; 2009 Jan; 57(2):119-35. PubMed ID: 18661557
    [TBL] [Abstract][Full Text] [Related]  

  • 25. TNF-α potentiates glutamate-induced spinal cord motoneuron death via NF-κB.
    Tolosa L; Caraballo-Miralles V; Olmos G; Lladó J
    Mol Cell Neurosci; 2011 Jan; 46(1):176-86. PubMed ID: 20849956
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Riluzole: what it does to spinal and brainstem neurons and how it does it.
    Cifra A; Mazzone GL; Nistri A
    Neuroscientist; 2013 Apr; 19(2):137-44. PubMed ID: 22596264
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fungal Neurotoxins and Sporadic Amyotrophic Lateral Sclerosis.
    French PW; Ludowyke R; Guillemin GJ
    Neurotox Res; 2019 May; 35(4):969-980. PubMed ID: 30515715
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Combined Treatment of an Amyotrophic Lateral Sclerosis Rat Model with Recombinant GOT1 and Oxaloacetic Acid: A Novel Neuroprotective Treatment.
    Ruban A; Malina KC; Cooper I; Graubardt N; Babakin L; Jona G; Teichberg VI
    Neurodegener Dis; 2015; 15(4):233-42. PubMed ID: 26113413
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Amyotrophic lateral sclerosis and excitotoxicity: from pathological mechanism to therapeutic target.
    Bogaert E; d'Ydewalle C; Van Den Bosch L
    CNS Neurol Disord Drug Targets; 2010 Jul; 9(3):297-304. PubMed ID: 20406181
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Molecular and cellular mechanism of glutamate receptors in relation to amyotrophic lateral sclerosis.
    Iwasaki Y; Ikeda K; Kinoshita M
    Curr Drug Targets CNS Neurol Disord; 2002 Oct; 1(5):511-8. PubMed ID: 12769603
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Differential expression of mGluR5 in human lumbosacral motoneurons.
    Anneser JM; Ince PG; Shaw PJ; Borasio GD
    Neuroreport; 2004 Feb; 15(2):271-3. PubMed ID: 15076751
    [TBL] [Abstract][Full Text] [Related]  

  • 32. CDP-choline protects motor neurons against apoptotic changes in a model of chronic glutamate excitotoxicity in vitro.
    Matyja E; Taraszewska A; Nagańska E; Grieb P; Rafałowska J
    Folia Neuropathol; 2008; 46(2):139-48. PubMed ID: 18587708
    [TBL] [Abstract][Full Text] [Related]  

  • 33. GM1 ganglioside exerts protective effects against glutamate-excitotoxicity via its oligosaccharide in wild-type and amyotrophic lateral sclerosis motor neurons.
    Lunghi G; Di Biase E; Carsana EV; Henriques A; Callizot N; Mauri L; Ciampa MG; Mari L; Loberto N; Aureli M; Sonnino S; Spedding M; Chiricozzi E; Fazzari M
    FEBS Open Bio; 2023 Dec; 13(12):2324-2341. PubMed ID: 37885330
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Neurotrophic Properties of C-Terminal Domain of the Heavy Chain of Tetanus Toxin on Motor Neuron Disease.
    Herrando-Grabulosa M; Casas C; Talbot K; Aguilera J
    Toxins (Basel); 2020 Oct; 12(10):. PubMed ID: 33096857
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Excitotoxic and oxidative cross-talk between motor neurons and glia in ALS pathogenesis.
    Rao SD; Weiss JH
    Trends Neurosci; 2004 Jan; 27(1):17-23. PubMed ID: 14698606
    [No Abstract]   [Full Text] [Related]  

  • 36. Excitotoxicity hypothesis.
    Rothstein JD
    Neurology; 1996 Oct; 47(4 Suppl 2):S19-25; discussion S26. PubMed ID: 8858047
    [No Abstract]   [Full Text] [Related]  

  • 37. T cells in amyotrophic lateral sclerosis.
    Holmøy T
    Eur J Neurol; 2008 Apr; 15(4):360-6. PubMed ID: 18266871
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Glutamate release and uptake processes are altered in a new mouse model of amyotrophic lateral sclerosis.
    Grigoriev VV; Efimova AD; Ustyugov AA; Shevchenko VP; Bachurin SO; Myasoedov NF
    Dokl Biochem Biophys; 2016 May; 468(1):165-7. PubMed ID: 27417710
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Multiple Roles of Transforming Growth Factor Beta in Amyotrophic Lateral Sclerosis.
    Galbiati M; Crippa V; Rusmini P; Cristofani R; Messi E; Piccolella M; Tedesco B; Ferrari V; Casarotto E; Chierichetti M; Poletti A
    Int J Mol Sci; 2020 Jun; 21(12):. PubMed ID: 32560258
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The Sigma-1 Receptor-A Therapeutic Target for the Treatment of ALS?
    Mavlyutov TA; Baker EM; Losenegger TM; Kim JR; Torres B; Epstein ML; Ruoho AE
    Adv Exp Med Biol; 2017; 964():255-265. PubMed ID: 28315276
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.