These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
449 related articles for article (PubMed ID: 21872325)
1. The role of plasma proteins in cell adhesion to PEG surface-density-gradient-modified titanium oxide. Pei J; Hall H; Spencer ND Biomaterials; 2011 Dec; 32(34):8968-78. PubMed ID: 21872325 [TBL] [Abstract][Full Text] [Related]
2. Locally Addressable Electrochemical Patterning Technique (LAEPT) applied to poly(L-lysine)-graft-poly(ethylene glycol) adlayers on titanium and silicon oxide surfaces. Tang CS; Schmutz P; Petronis S; Textor M; Keller B; Vörös J Biotechnol Bioeng; 2005 Aug; 91(3):285-95. PubMed ID: 15977251 [TBL] [Abstract][Full Text] [Related]
3. High salt stability and protein resistance of poly(L-lysine)-g-poly(ethylene glycol) copolymers covalently immobilized via aldehyde plasma polymer interlayers on inorganic and polymeric substrates. Blättler TM; Pasche S; Textor M; Griesser HJ Langmuir; 2006 Jun; 22(13):5760-9. PubMed ID: 16768506 [TBL] [Abstract][Full Text] [Related]
4. Adsorption and lubricating properties of poly(l-lysine)-graft-poly(ethylene glycol) on human-hair surfaces. Lee S; Zürcher S; Dorcier A; Luengo GS; Spencer ND ACS Appl Mater Interfaces; 2009 Sep; 1(9):1938-45. PubMed ID: 20355818 [TBL] [Abstract][Full Text] [Related]
5. Reduced medical infection related bacterial strains adhesion on bioactive RGD modified titanium surfaces: a first step toward cell selective surfaces. Maddikeri RR; Tosatti S; Schuler M; Chessari S; Textor M; Richards RG; Harris LG J Biomed Mater Res A; 2008 Feb; 84(2):425-35. PubMed ID: 17618480 [TBL] [Abstract][Full Text] [Related]
6. Surface modification of PLGA microspheres. Müller M; Vörös J; Csúcs G; Walter E; Danuser G; Merkle HP; Spencer ND; Textor M J Biomed Mater Res A; 2003 Jul; 66(1):55-61. PubMed ID: 12833431 [TBL] [Abstract][Full Text] [Related]
7. Poly(L-lysine)-grafted-poly(ethylene glycol)-based surface-chemical gradients. Preparation, characterization, and first applications. Morgenthaler S; Zink C; Städler B; Vörös J; Lee S; Spencer ND; Tosatti SG Biointerphases; 2006 Dec; 1(4):156-65. PubMed ID: 20408629 [TBL] [Abstract][Full Text] [Related]
8. Protein resistance of titanium oxide surfaces modified by biologically inspired mPEG-DOPA. Dalsin JL; Lin L; Tosatti S; Vörös J; Textor M; Messersmith PB Langmuir; 2005 Jan; 21(2):640-6. PubMed ID: 15641834 [TBL] [Abstract][Full Text] [Related]
9. Size-selective protein adsorption to polystyrene surfaces by self-assembled grafted poly(ethylene glycols) with varied chain lengths. Lazos D; Franzka S; Ulbricht M Langmuir; 2005 Sep; 21(19):8774-84. PubMed ID: 16142960 [TBL] [Abstract][Full Text] [Related]
10. Issues of ligand accessibility and mobility in initial cell attachment. Thid D; Bally M; Holm K; Chessari S; Tosatti S; Textor M; Gold J Langmuir; 2007 Nov; 23(23):11693-704. PubMed ID: 17918863 [TBL] [Abstract][Full Text] [Related]
11. RGD-containing peptide GCRGYGRGDSPG reduces enhancement of osteoblast differentiation by poly(L-lysine)-graft-poly(ethylene glycol)-coated titanium surfaces. Tosatti S; Schwartz Z; Campbell C; Cochran DL; VandeVondele S; Hubbell JA; Denzer A; Simpson J; Wieland M; Lohmann CH; Textor M; Boyan BD J Biomed Mater Res A; 2004 Mar; 68(3):458-72. PubMed ID: 14762925 [TBL] [Abstract][Full Text] [Related]
12. RGD-grafted poly-L-lysine-graft-(polyethylene glycol) copolymers block non-specific protein adsorption while promoting cell adhesion. VandeVondele S; Vörös J; Hubbell JA Biotechnol Bioeng; 2003 Jun; 82(7):784-90. PubMed ID: 12701144 [TBL] [Abstract][Full Text] [Related]
13. Comparison of PEI-PEG and PLL-PEG copolymer coatings on the prevention of protein fouling. Bergstrand A; Rahmani-Monfared G; Ostlund A; Nydén M; Holmberg K J Biomed Mater Res A; 2009 Mar; 88(3):608-15. PubMed ID: 18314896 [TBL] [Abstract][Full Text] [Related]
14. Lysine-PEG-modified polyurethane as a fibrinolytic surface: Effect of PEG chain length on protein interactions, platelet interactions and clot lysis. Li D; Chen H; Glenn McClung W; Brash JL Acta Biomater; 2009 Jul; 5(6):1864-71. PubMed ID: 19342321 [TBL] [Abstract][Full Text] [Related]
15. Generation of contact-printing based poly(ethylene glycol) gradient surfaces with micrometer-sized steps. Cai Y; Yun YH; Newby BM Colloids Surf B Biointerfaces; 2010 Jan; 75(1):115-22. PubMed ID: 19744840 [TBL] [Abstract][Full Text] [Related]
16. Surface modification of plastic, glass and titanium by photoimmobilization of polyethylene glycol for antibiofouling. Ito Y; Hasuda H; Sakuragi M; Tsuzuki S Acta Biomater; 2007 Nov; 3(6):1024-32. PubMed ID: 17644500 [TBL] [Abstract][Full Text] [Related]
17. Methacrylate polymer layers bearing poly(ethylene oxide) and phosphorylcholine side chains as non-fouling surfaces: in vitro interactions with plasma proteins and platelets. Feng W; Gao X; McClung G; Zhu S; Ishihara K; Brash JL Acta Biomater; 2011 Oct; 7(10):3692-9. PubMed ID: 21693202 [TBL] [Abstract][Full Text] [Related]
18. Immobilization of the enzyme beta-lactamase on biotin-derivatized poly(L-lysine)-g-poly(ethylene glycol)-coated sensor chips: a study on oriented attachment and surface activity by enzyme kinetics and in situ optical sensing. Zhen G; Eggli V; Vörös J; Zammaretti P; Textor M; Glockshuber R; Kuennemann E Langmuir; 2004 Nov; 20(24):10464-73. PubMed ID: 15544374 [TBL] [Abstract][Full Text] [Related]