These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 21872418)

  • 21. A novel polymeric fibrous microstructured biodegradable small-caliber tubular scaffold for cardiovascular tissue engineering.
    Dimopoulos A; Markatos DN; Mitropoulou A; Panagiotopoulos I; Koletsis E; Mavrilas D
    J Mater Sci Mater Med; 2021 Mar; 32(2):21. PubMed ID: 33649939
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A dynamically cultured collagen/cells-incorporated elastic scaffold for small-diameter vascular grafts.
    Park IS; Kim YH; Jung Y; Kim SH; Kim SH
    J Biomater Sci Polym Ed; 2012; 23(14):1807-20. PubMed ID: 21943800
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Sequential adaptation of perfusion and transport conditions significantly improves vascular construct recellularization and biomechanics.
    Van de Walle AB; Moore MC; McFetridge PS
    J Tissue Eng Regen Med; 2020 Mar; 14(3):510-520. PubMed ID: 32012480
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Allogeneic human tissue-engineered blood vessel.
    Quint C; Arief M; Muto A; Dardik A; Niklason LE
    J Vasc Surg; 2012 Mar; 55(3):790-8. PubMed ID: 22056286
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cellular interactions and biomechanical properties of a unique vascular-derived scaffold for periodontal tissue regeneration.
    Goktas S; Pierre N; Abe K; Dmytryk J; McFetridge PS
    Tissue Eng Part A; 2010 Mar; 16(3):769-80. PubMed ID: 19778172
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Flow with variable pulse frequencies accelerates vascular recellularization and remodeling of a human bioscaffold.
    Van de Walle AB; McFetridge PS
    J Biomed Mater Res A; 2021 Jan; 109(1):92-103. PubMed ID: 32441862
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Electrospun polyurethane/poly (ɛ-caprolactone) nanofibers promoted the attachment and growth of human endothelial cells in static and dynamic culture conditions.
    Karkan SF; Rahbarghazi R; Davaran S; Kaleybar LS; Khoshfetrat AB; Heidarzadeh M; Zolali E; Akbarzadeh A
    Microvasc Res; 2021 Jan; 133():104073. PubMed ID: 32949575
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Evaluation of an elastic decellularized tendon-derived scaffold for the vascular tissue engineering application.
    Ghazanfari S; Alberti KA; Xu Q; Khademhosseini A
    J Biomed Mater Res A; 2019 Jun; 107(6):1225-1234. PubMed ID: 30684384
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The consequence of biologic graft processing on blood interface biocompatibility and mechanics.
    Van de Walle AB; Uzarski JS; McFetridge PS
    Cardiovasc Eng Technol; 2015 Sep; 6(3):303-13. PubMed ID: 26322140
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Evaluation of tubular poly(trimethylene carbonate) tissue engineering scaffolds in a circulating pulsatile flow system.
    Song Y; Wennink JW; Poot AA; Vermes I; Feijen J; Grijpma DW
    Int J Artif Organs; 2011 Feb; 34(2):161-71. PubMed ID: 21374572
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A mathematical model for the determination of forming tissue moduli in needled-nonwoven scaffolds.
    Soares JS; Zhang W; Sacks MS
    Acta Biomater; 2017 Mar; 51():220-236. PubMed ID: 28063987
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Reendothelialization of tubular scaffolds by sedimentary and rotative forces: a first step toward tissue-engineered venous graft.
    Wu YF; Zhang J; Gu YQ; Li JX; Wang LC; Wang ZG
    Cardiovasc Revasc Med; 2008; 9(4):238-47. PubMed ID: 18928949
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Directed oxygen gradients initiate a robust early remodeling response in engineered vascular grafts.
    Moore M; Moore R; McFetridge PS
    Tissue Eng Part A; 2013 Sep; 19(17-18):2005-13. PubMed ID: 23541106
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Biomechanical effects of flow and coculture on human aortic and cord blood-derived endothelial cells.
    Cao L; Wu A; Truskey GA
    J Biomech; 2011 Jul; 44(11):2150-7. PubMed ID: 21683362
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Dynamic flow priming programs allow tuning up the cell layers properties for engineered vascular graft.
    Baba K; Mikhailov A; Sankai Y
    Sci Rep; 2021 Jul; 11(1):14666. PubMed ID: 34282200
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Tissue-engineered blood vessel graft produced by self-derived cells and allogenic acellular matrix: a functional performance and histologic study.
    Yang D; Guo T; Nie C; Morris SF
    Ann Plast Surg; 2009 Mar; 62(3):297-303. PubMed ID: 19240529
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The fate of an endothelium layer after preconditioning.
    Yazdani SK; Tillman BW; Berry JL; Soker S; Geary RL
    J Vasc Surg; 2010 Jan; 51(1):174-83. PubMed ID: 20117500
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Haemodialysis access via tissue-engineered vascular graft.
    Rasouli MR; Moini M; Anvari A
    Lancet; 2009 Jul; 374(9685):200; author reply 201. PubMed ID: 19616716
    [No Abstract]   [Full Text] [Related]  

  • 39. Physiologic pulsatile flow bioreactor conditioning of poly(ethylene glycol)-based tissue engineered vascular grafts.
    Hahn MS; McHale MK; Wang E; Schmedlen RH; West JL
    Ann Biomed Eng; 2007 Feb; 35(2):190-200. PubMed ID: 17180465
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Contrasting effects of vasculogenic induction upon biaxial bioreactor stimulation of mesenchymal stem cells and endothelial progenitor cells cocultures in three-dimensional scaffolds under in vitro and in vivo paradigms for vascularized bone tissue engineering.
    Liu Y; Teoh SH; Chong MS; Yeow CH; Kamm RD; Choolani M; Chan JK
    Tissue Eng Part A; 2013 Apr; 19(7-8):893-904. PubMed ID: 23102089
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.