These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 21872418)

  • 41. Physiologic pulsatile flow bioreactor conditioning of poly(ethylene glycol)-based tissue engineered vascular grafts.
    Hahn MS; McHale MK; Wang E; Schmedlen RH; West JL
    Ann Biomed Eng; 2007 Feb; 35(2):190-200. PubMed ID: 17180465
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Contrasting effects of vasculogenic induction upon biaxial bioreactor stimulation of mesenchymal stem cells and endothelial progenitor cells cocultures in three-dimensional scaffolds under in vitro and in vivo paradigms for vascularized bone tissue engineering.
    Liu Y; Teoh SH; Chong MS; Yeow CH; Kamm RD; Choolani M; Chan JK
    Tissue Eng Part A; 2013 Apr; 19(7-8):893-904. PubMed ID: 23102089
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Dynamic culture conditions to generate silk-based tissue-engineered vascular grafts.
    Zhang X; Wang X; Keshav V; Wang X; Johanas JT; Leisk GG; Kaplan DL
    Biomaterials; 2009 Jul; 30(19):3213-23. PubMed ID: 19232717
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A self-renewing, tissue-engineered vascular graft for arterial reconstruction.
    Torikai K; Ichikawa H; Hirakawa K; Matsumiya G; Kuratani T; Iwai S; Saito A; Kawaguchi N; Matsuura N; Sawa Y
    J Thorac Cardiovasc Surg; 2008 Jul; 136(1):37-45, 45.e1. PubMed ID: 18603051
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Biomechanical and morphological stability of acellular scaffolds for tissue-engineered heart valves depends on different storage conditions.
    Wilczek P; Paulina G; Karolina J; Martyna M; Grazyna W; Roman M; Aldona M; Anna S; Aneta S
    J Mater Sci Mater Med; 2018 Jul; 29(7):106. PubMed ID: 29971508
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The impact of substrate stiffness and mechanical loading on fibroblast-induced scaffold remodeling.
    Petersen A; Joly P; Bergmann C; Korus G; Duda GN
    Tissue Eng Part A; 2012 Sep; 18(17-18):1804-17. PubMed ID: 22519582
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Comparison of candidate scaffolds for tissue engineering for stress urinary incontinence and pelvic organ prolapse repair.
    Mangera A; Bullock AJ; Roman S; Chapple CR; MacNeil S
    BJU Int; 2013 Sep; 112(5):674-85. PubMed ID: 23773418
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The role of shear stress on mechanically stimulated engineered vascular substitutes: influence on mechanical and biological properties.
    Boccafoschi F; Bosetti M; Mosca C; Mantovani D; Cannas M
    J Tissue Eng Regen Med; 2012 Jan; 6(1):60-7. PubMed ID: 21308992
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Valvular interstitial cell seeded poly(glycerol sebacate) scaffolds: toward a biomimetic in vitro model for heart valve tissue engineering.
    Masoumi N; Johnson KL; Howell MC; Engelmayr GC
    Acta Biomater; 2013 Apr; 9(4):5974-88. PubMed ID: 23295404
    [TBL] [Abstract][Full Text] [Related]  

  • 50. In vitro remodeling and structural characterization of degradable polymer scaffold-based tissue-engineered vascular grafts using optical coherence tomography.
    Chen W; Yang J; Liao W; Zhou J; Zheng J; Wu Y; Li D; Lin Z
    Cell Tissue Res; 2017 Dec; 370(3):417-426. PubMed ID: 28887711
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Modifications of the mechanical properties of in vivo tissue-engineered vascular grafts by chemical treatments for a short duration.
    Inoue T; Kanda K; Yamanami M; Kami D; Gojo S; Yaku H
    PLoS One; 2021; 16(3):e0248346. PubMed ID: 33711057
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Development of a composite degradable/nondegradable tissue-engineered vascular graft.
    Tschoeke B; Flanagan TC; Cornelissen A; Koch S; Roehl A; Sriharwoko M; Sachweh JS; Gries T; Schmitz-Rode T; Jockenhoevel S
    Artif Organs; 2008 Oct; 32(10):800-9. PubMed ID: 18684200
    [TBL] [Abstract][Full Text] [Related]  

  • 53. In vitro fabrication of a tissue engineered human cardiovascular patch for future use in cardiovascular surgery.
    Yang C; Sodian R; Fu P; Lüders C; Lemke T; Du J; Hübler M; Weng Y; Meyer R; Hetzer R
    Ann Thorac Surg; 2006 Jan; 81(1):57-63. PubMed ID: 16368335
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Fluid flow increases type II collagen deposition and tensile mechanical properties in bioreactor-grown tissue-engineered cartilage.
    Gemmiti CV; Guldberg RE
    Tissue Eng; 2006 Mar; 12(3):469-79. PubMed ID: 16579680
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Evaluation of decellularized human umbilical vein (HUV) for vascular tissue engineering - comparison with endothelium-denuded HUV.
    Mangold S; Schrammel S; Huber G; Niemeyer M; Schmid C; Stangassinger M; Hoenicka M
    J Tissue Eng Regen Med; 2015 Jan; 9(1):13-23. PubMed ID: 23038628
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Elastic modulus of prepared canine jejunum, a new vascular graft material.
    Herbert ST; Badylak SF; Geddes LA; Hillberry B; Lantz GC; Kokini K
    Ann Biomed Eng; 1993; 21(6):727-33. PubMed ID: 8116923
    [TBL] [Abstract][Full Text] [Related]  

  • 57. New pulsatile hydrostatic pressure bioreactor for vascular tissue-engineered constructs.
    Shaikh FM; O'Brien TP; Callanan A; Kavanagh EG; Burke PE; Grace PA; McGloughlin TM
    Artif Organs; 2010 Feb; 34(2):153-8. PubMed ID: 19995361
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The virgin, modified, human, umbilical vein graft: morphologic characteristics and mechanical properties.
    Gagnon Y; Guidoin R; Downs AR; Martz H; DeEstable-Puig RF; Beaudoin G; Marois D; Laroche G; Roy P; Gosselin C
    Can J Surg; 1986 Nov; 29(6):411-8. PubMed ID: 3779543
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Bioengineered three-layered robust and elastic artery using hemodynamically-equivalent pulsatile bioreactor.
    Iwasaki K; Kojima K; Kodama S; Paz AC; Chambers M; Umezu M; Vacanti CA
    Circulation; 2008 Sep; 118(14 Suppl):S52-7. PubMed ID: 18824769
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Tissue-engineered vessel derived from human fibroblasts with an electrospun scaffold.
    Quint C
    J Tissue Eng Regen Med; 2020 Nov; 14(11):1652-1660. PubMed ID: 32889733
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.