BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 21872460)

  • 1. Multienzyme-nanoparticles amplification for sensitive virus genotyping in microfluidic microbeads array using Au nanoparticle probes and quantum dots as labels.
    Zhang H; Liu L; Li CW; Fu H; Chen Y; Yang M
    Biosens Bioelectron; 2011 Nov; 29(1):89-96. PubMed ID: 21872460
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microfluidic beads-based immunosensor for sensitive detection of cancer biomarker proteins using multienzyme-nanoparticle amplification and quantum dots labels.
    Zhang H; Liu L; Fu X; Zhu Z
    Biosens Bioelectron; 2013 Apr; 42():23-30. PubMed ID: 23202325
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microfluidic bead-based enzymatic primer extension for single-nucleotide discrimination using quantum dots as labels.
    Zhang H; Fu X; Liu L; Zhu Z; Yang K
    Anal Biochem; 2012 Jul; 426(1):30-9. PubMed ID: 22487314
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A microfluidic device with microbead array for sensitive virus detection and genotyping using quantum dots as fluorescence labels.
    Zhang H; Xu T; Li CW; Yang M
    Biosens Bioelectron; 2010 Jul; 25(11):2402-7. PubMed ID: 20483585
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microfluidic bead-based multienzyme-nanoparticle amplification for detection of circulating tumor cells in the blood using quantum dots labels.
    Zhang H; Fu X; Hu J; Zhu Z
    Anal Chim Acta; 2013 May; 779():64-71. PubMed ID: 23663673
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On-chip oligonucleotide ligation assay using one-dimensional microfluidic beads array for the detection of low-abundant DNA point mutations.
    Zhang H; Yang X; Wang K; Tan W; Li H; Zuo X; Wen J
    Biosens Bioelectron; 2008 Feb; 23(7):945-51. PubMed ID: 17983740
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analytical evaluation of the PapilloCheck test, a new commercial DNA chip for detection and genotyping of human papillomavirus.
    Dalstein V; Merlin S; Bali C; Saunier M; Dachez R; Ronsin C
    J Virol Methods; 2009 Mar; 156(1-2):77-83. PubMed ID: 19041893
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Direct visual detection of DNA based on the light scattering of silica nanoparticles on a human papillomavirus DNA chip.
    Piao JY; Park EH; Choi K; Quan B; Kang DH; Park PY; Kim DS; Chung DS
    Talanta; 2009 Dec; 80(2):967-73. PubMed ID: 19836580
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultrasensitive flow injection chemiluminescence detection of DNA hybridization using signal DNA probe modified with Au and CuS nanoparticles.
    Zhang S; Zhong H; Ding C
    Anal Chem; 2008 Oct; 80(19):7206-12. PubMed ID: 18759495
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [The development and clinical application of papillomavirus genotyping by DNA chip].
    Yang G; Liang CH; Cui JH; Chen S
    Zhonghua Liu Xing Bing Xue Za Zhi; 2006 Jan; 27(1):47-9. PubMed ID: 16737573
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enzyme-functionalized silica nanoparticles as sensitive labels in biosensing.
    Wu Y; Chen C; Liu S
    Anal Chem; 2009 Feb; 81(4):1600-7. PubMed ID: 19140671
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An HPV 16, 18, and 45 genotyping test based on Hybrid Capture technology.
    Thai H; Rangwala S; Gay T; Keating K; McLeod S; Nazarenko I; O'Neil D; Pfister D; Loeffert D
    J Clin Virol; 2009 Jul; 45 Suppl 1():S93-7. PubMed ID: 19651375
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Membrane transfer-based colorimetric DNA detection using enzyme modified gold nanoparticles].
    Li H; Jing F; Gao Q; Jia C; Chen J; Jin Q; Zhao J
    Sheng Wu Gong Cheng Xue Bao; 2010 Aug; 26(8):1135-42. PubMed ID: 21090120
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel method of HPV genotyping using Hybrid Capture sample preparation method combined with GP5+/6+ PCR and multiplex detection on Luminex XMAP.
    Nazarenko I; Kobayashi L; Giles J; Fishman C; Chen G; Lorincz A
    J Virol Methods; 2008 Dec; 154(1-2):76-81. PubMed ID: 18835300
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hairpin DNA switch for ultrasensitive spectrophotometric detection of DNA hybridization based on gold nanoparticles and enzyme signal amplification.
    Zhang Y; Tang Z; Wang J; Wu H; Maham A; Lin Y
    Anal Chem; 2010 Aug; 82(15):6440-6. PubMed ID: 20608643
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microfluidic chips designed for measuring biomolecules through a microbead-based quantum dot fluorescence assay.
    Yun KS; Lee D; Kim HS; Yoon E
    Methods Mol Biol; 2009; 544():53-67. PubMed ID: 19488693
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Visual detection of single-nucleotide polymorphism with hairpin oligonucleotide-functionalized gold nanoparticles.
    He Y; Zeng K; Gurung AS; Baloda M; Xu H; Zhang X; Liu G
    Anal Chem; 2010 Sep; 82(17):7169-77. PubMed ID: 20681563
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultrasensitive electrochemical detection for DNA arrays based on silver nanoparticle aggregates.
    Li H; Sun Z; Zhong W; Hao N; Xu D; Chen HY
    Anal Chem; 2010 Jul; 82(13):5477-83. PubMed ID: 20550213
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Disposable nucleic acid biosensors based on gold nanoparticle probes and lateral flow strip.
    Mao X; Ma Y; Zhang A; Zhang L; Zeng L; Liu G
    Anal Chem; 2009 Feb; 81(4):1660-8. PubMed ID: 19159221
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Subfemtomolar electrochemical detection of target DNA by catalytic enlargement of the hybridized gold nanoparticle labels.
    Rochelet-Dequaire M; Limoges B; Brossier P
    Analyst; 2006 Aug; 131(8):923-9. PubMed ID: 17028726
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.