These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
161 related articles for article (PubMed ID: 21872863)
1. The effects of bone and pore volume fraction on the mechanical properties of PMMA/bone biopsies extracted from augmented vertebrae. Kinzl M; Boger A; Zysset PK; Pahr DH J Biomech; 2011 Oct; 44(15):2732-6. PubMed ID: 21872863 [TBL] [Abstract][Full Text] [Related]
2. The mechanical behavior of PMMA/bone specimens extracted from augmented vertebrae: a numerical study of interface properties, PMMA shrinkage and trabecular bone damage. Kinzl M; Boger A; Zysset PK; Pahr DH J Biomech; 2012 May; 45(8):1478-84. PubMed ID: 22386105 [TBL] [Abstract][Full Text] [Related]
3. Performance of vertebral cancellous bone augmented with compliant PMMA under dynamic loads. Boger A; Bohner M; Heini P; Schwieger K; Schneider E Acta Biomater; 2008 Nov; 4(6):1688-93. PubMed ID: 18678533 [TBL] [Abstract][Full Text] [Related]
4. Variation of the mechanical properties of PMMA to suit osteoporotic cancellous bone. Boger A; Bisig A; Bohner M; Heini P; Schneider E J Biomater Sci Polym Ed; 2008; 19(9):1125-42. PubMed ID: 18727856 [TBL] [Abstract][Full Text] [Related]
5. Cement distribution, volume, and compliance in vertebroplasty: some answers from an anatomy-based nonlinear finite element study. Chevalier Y; Pahr D; Charlebois M; Heini P; Schneider E; Zysset P Spine (Phila Pa 1976); 2008 Jul; 33(16):1722-30. PubMed ID: 18628704 [TBL] [Abstract][Full Text] [Related]
6. Mechanical and morphological characterization of PMMA/bone composites in human femoral heads. Sas A; Helgason B; Ferguson SJ; van Lenthe GH J Mech Behav Biomed Mater; 2021 Mar; 115():104247. PubMed ID: 33310683 [TBL] [Abstract][Full Text] [Related]
7. Mechanics of bone/PMMA composite structures: an in vitro study of human vertebrae. Race A; Mann KA; Edidin AA J Biomech; 2007; 40(5):1002-10. PubMed ID: 16797554 [TBL] [Abstract][Full Text] [Related]
8. Bone marrow modified acrylic bone cement for augmentation of osteoporotic cancellous bone. Arens D; Rothstock S; Windolf M; Boger A J Mech Behav Biomed Mater; 2011 Nov; 4(8):2081-9. PubMed ID: 22098908 [TBL] [Abstract][Full Text] [Related]
9. [In vivo experiment of porous bioactive bone cement modified by bioglass and chitosan]. Li Y; Lei W; Wang Z; Zhang Y; Niu E; Yu L; Wu J; Zang Y; Liu Z; Wu Z Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2013 Mar; 27(3):320-5. PubMed ID: 23672134 [TBL] [Abstract][Full Text] [Related]
11. The effect of regional variations of the trabecular bone properties on the compressive strength of human vertebral bodies. Kim DG; Hunt CA; Zauel R; Fyhrie DP; Yeni YN Ann Biomed Eng; 2007 Nov; 35(11):1907-13. PubMed ID: 17690983 [TBL] [Abstract][Full Text] [Related]
12. Mechanical efficacy of vertebroplasty: influence of cement type, BMD, fracture severity, and disc degeneration. Luo J; Skrzypiec DM; Pollintine P; Adams MA; Annesley-Williams DJ; Dolan P Bone; 2007 Apr; 40(4):1110-9. PubMed ID: 17229596 [TBL] [Abstract][Full Text] [Related]
13. Vertebroplasty: only small cement volumes are required to normalize stress distributions on the vertebral bodies. Luo J; Daines L; Charalambous A; Adams MA; Annesley-Williams DJ; Dolan P Spine (Phila Pa 1976); 2009 Dec; 34(26):2865-73. PubMed ID: 20010394 [TBL] [Abstract][Full Text] [Related]
14. The role of fabric in the large strain compressive behavior of human trabecular bone. Charlebois M; Pretterklieber M; Zysset PK J Biomech Eng; 2010 Dec; 132(12):121006. PubMed ID: 21142320 [TBL] [Abstract][Full Text] [Related]
15. Validation of a voxel-based FE method for prediction of the uniaxial apparent modulus of human trabecular bone using macroscopic mechanical tests and nanoindentation. Chevalier Y; Pahr D; Allmer H; Charlebois M; Zysset P J Biomech; 2007; 40(15):3333-40. PubMed ID: 17572433 [TBL] [Abstract][Full Text] [Related]
16. Evaluation of changes in trabecular bone architecture and mechanical properties of minipig vertebrae by three-dimensional magnetic resonance microimaging and finite element modeling. Borah B; Dufresne TE; Cockman MD; Gross GJ; Sod EW; Myers WR; Combs KS; Higgins RE; Pierce SA; Stevens ML J Bone Miner Res; 2000 Sep; 15(9):1786-97. PubMed ID: 10976998 [TBL] [Abstract][Full Text] [Related]
17. Bulk properties and bioactivity assessment of porous polymethylmethacrylate cement loaded with calcium phosphates under simulated physiological conditions. Lopez-Heredia MA; Sa Y; Salmon P; de Wijn JR; Wolke JG; Jansen JA Acta Biomater; 2012 Aug; 8(8):3120-7. PubMed ID: 22588072 [TBL] [Abstract][Full Text] [Related]
18. Modelling cement augmentation: a comparative experimental and finite element study at the continuum level. Zhao Y; Jin ZM; Wilcox RK Proc Inst Mech Eng H; 2010; 224(7):903-11. PubMed ID: 20839657 [TBL] [Abstract][Full Text] [Related]
19. Valid micro finite element models of vertebral trabecular bone can be obtained using tissue properties measured with nanoindentation under wet conditions. Wolfram U; Wilke HJ; Zysset PK J Biomech; 2010 Jun; 43(9):1731-7. PubMed ID: 20206932 [TBL] [Abstract][Full Text] [Related]
20. Evaluation of Different Experience Levels of Orthopaedic Residents Effect on Polymethylmethacrylate (PMMA) Bone Cement Mechanical Properties. Struemph JM; Chong AC; Wooley PH Iowa Orthop J; 2015; 35():193-8. PubMed ID: 26361465 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]