BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 21872923)

  • 1. The performance of primary human renal cells in hollow fiber bioreactors for bioartificial kidneys.
    Oo ZY; Deng R; Hu M; Ni M; Kandasamy K; bin Ibrahim MS; Ying JY; Zink D
    Biomaterials; 2011 Dec; 32(34):8806-15. PubMed ID: 21872923
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of membrane materials and membrane coatings for bioreactor units of bioartificial kidneys.
    Ni M; Teo JC; Ibrahim MS; Zhang K; Tasnim F; Chow PY; Zink D; Ying JY
    Biomaterials; 2011 Feb; 32(6):1465-76. PubMed ID: 21145586
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of bone morphogenetic proteins on primary human renal cells and the generation of bone morphogenetic protein-7-expressing cells for application in bioartificial kidneys.
    Tasnim F; Kandasamy K; Muck JS; Bin Ibrahim MS; Ying JY; Zink D
    Tissue Eng Part A; 2012 Feb; 18(3-4):262-76. PubMed ID: 21854258
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Morphological studies on the culture of kidney epithelial cells in a fiber-in-fiber bioreactor design with hollow fiber membranes.
    Fey-Lamprecht F; Albrecht W; Groth T; Weigel T; Gross U
    J Biomed Mater Res A; 2003 May; 65(2):144-57. PubMed ID: 12734806
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bioartificial kidney. II. A convective flow model of a hollow fiber bioartificial renal tubule.
    Moussy Y
    Biotechnol Bioeng; 2000 Apr; 68(2):153-9. PubMed ID: 10712731
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced oxygen delivery to primary hepatocytes within a hollow fiber bioreactor facilitated via hemoglobin-based oxygen carriers.
    Sullivan JP; Gordon JE; Bou-Akl T; Matthew HW; Palmer AF
    Artif Cells Blood Substit Immobil Biotechnol; 2007; 35(6):585-606. PubMed ID: 18097786
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The impact of extracellular matrix coatings on the performance of human renal cells applied in bioartificial kidneys.
    Zhang H; Tasnim F; Ying JY; Zink D
    Biomaterials; 2009 May; 30(15):2899-911. PubMed ID: 19217158
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The SlideReactor--a simple hollow fiber based bioreactor suitable for light microscopy.
    Sauer IM; Schwartlander R; Schmid J; Efimova E; Vondran FW; Kehr D; Pless G; Spinelli A; Brandenburg B; Hildt E; Neuhaus P
    Artif Organs; 2005 Mar; 29(3):264-7. PubMed ID: 15725230
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Human hepatocyte functions in a crossed hollow fiber membrane bioreactor.
    De Bartolo L; Salerno S; Curcio E; Piscioneri A; Rende M; Morelli S; Tasselli F; Bader A; Drioli E
    Biomaterials; 2009 May; 30(13):2531-43. PubMed ID: 19185912
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel design of bioartificial kidneys with improved cell performance and haemocompatibility.
    Oo ZY; Kandasamy K; Tasnim F; Zink D
    J Cell Mol Med; 2013 Apr; 17(4):497-507. PubMed ID: 23480720
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Present status and perspective of the development of a bioartificial kidney for chronic renal failure patients.
    Saito A; Aung T; Sekiguchi K; Sato Y
    Ther Apher Dial; 2006 Aug; 10(4):342-7. PubMed ID: 16911187
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cultivation of primary porcine hepatocytes in an OXY-HFB for use as a bioartificial liver device.
    Jasmund I; Langsch A; Simmoteit R; Bader A
    Biotechnol Prog; 2002; 18(4):839-46. PubMed ID: 12153319
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Screening tool for hollow-fiber bioreactor process development.
    Gramer MJ; Poeschl DM
    Biotechnol Prog; 1998 Mar; 14(2):203-9. PubMed ID: 9548770
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bifunctional polyethersulfone hollow fiber with a porous, single-layer skin for use as a bioartificial liver bioreactor.
    Zhang S; Liu T; Chen L; Ren M; Zhang B; Wang Z; Wang Y
    J Mater Sci Mater Med; 2012 Aug; 23(8):2001-11. PubMed ID: 22584823
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design of functional hollow fiber membranes modified with phospholipid polymers for application in total hemopurification system.
    Ye SH; Watanabe J; Takai M; Iwasaki Y; Ishihara K
    Biomaterials; 2005 Aug; 26(24):5032-41. PubMed ID: 15769539
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Porous and single-skinned polyethersulfone membranes support the growth of HepG2 cells: a potential biomaterial for bioartificial liver systems.
    Zhang SC; Liu T; Wang YJ
    J Biomater Appl; 2012 Sep; 27(3):359-66. PubMed ID: 21750186
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design and performance study of a novel immobilized hollow fiber membrane bioreactor.
    Yang P; Teo WK; Ting YP
    Bioresour Technol; 2006 Jan; 97(1):39-46. PubMed ID: 16154501
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimal NS0 cell growth in a hollow fiber bioreactor requires increased serum concentration or a cholesterol supplement on the cell side of the fiber.
    Gramer MJ; Maas J
    Biotechnol Prog; 2003; 19(6):1762-6. PubMed ID: 14656153
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Convection and hemoglobin-based oxygen carrier enhanced oxygen transport in a hepatic hollow fiber bioreactor.
    Sullivan JP; Harris DR; Palmer AF
    Artif Cells Blood Substit Immobil Biotechnol; 2008; 36(4):386-402. PubMed ID: 18649173
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Excimer laser channel creation in polyethersulfone hollow fibers for compartmentalized in vitro neuronal cell culture scaffolds.
    Brayfield CA; Marra KG; Leonard JP; Tracy Cui X; Gerlach JC
    Acta Biomater; 2008 Mar; 4(2):244-55. PubMed ID: 18060849
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.