These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
92 related articles for article (PubMed ID: 21872960)
21. Modeling the influence of electron beam irradiation on the heat resistance of Bacillus cereus spores. Valero M; Sarrías JA; Alvarez D; Salmerón MC Food Microbiol; 2006 Jun; 23(4):367-71. PubMed ID: 16943026 [TBL] [Abstract][Full Text] [Related]
22. Analysis of acid-stressed Bacillus cereus reveals a major oxidative response and inactivation-associated radical formation. Mols M; van Kranenburg R; van Melis CC; Moezelaar R; Abee T Environ Microbiol; 2010 Apr; 12(4):873-85. PubMed ID: 20074238 [TBL] [Abstract][Full Text] [Related]
23. Mechanism of killing of spores of Bacillus cereus and Bacillus megaterium by wet heat. Coleman WH; Zhang P; Li YQ; Setlow P Lett Appl Microbiol; 2010 May; 50(5):507-14. PubMed ID: 20302598 [TBL] [Abstract][Full Text] [Related]
24. Effect of temperatures on the growth, toxin production, and heat resistance of Bacillus cereus in cooked rice. Wang J; Ding T; Oh DH Foodborne Pathog Dis; 2014 Feb; 11(2):133-7. PubMed ID: 24404779 [TBL] [Abstract][Full Text] [Related]
25. Acid stress in the food pathogen Bacillus cereus. Browne N; Dowds BC J Appl Microbiol; 2002; 92(3):404-14. PubMed ID: 11872115 [TBL] [Abstract][Full Text] [Related]
26. Inactivation of Bacillus cereus spores in milk by mild pressure and heat treatments. Van Opstal I; Bagamboula CF; Vanmuysen SC; Wuytack EY; Michiels CW Int J Food Microbiol; 2004 Apr; 92(2):227-34. PubMed ID: 15109800 [TBL] [Abstract][Full Text] [Related]
27. Reduction of Bacillus cereus spores in sikhye, a traditional Korean rice beverage, by modified tyndallization processes with and without carbon dioxide injection. Kim H; Kim H; Bang J; Kim Y; Beuchat LR; Ryu JH Lett Appl Microbiol; 2012 Sep; 55(3):218-23. PubMed ID: 22725610 [TBL] [Abstract][Full Text] [Related]
28. HPLC-based monitoring of products formed from hydroethidine-based fluorogenic probes--the ultimate approach for intra- and extracellular superoxide detection. Kalyanaraman B; Dranka BP; Hardy M; Michalski R; Zielonka J Biochim Biophys Acta; 2014 Feb; 1840(2):739-44. PubMed ID: 23668959 [TBL] [Abstract][Full Text] [Related]
29. Absence of oxygen affects the capacity to sporulate and the spore properties of Bacillus cereus. Abbas AA; Planchon S; Jobin M; Schmitt P Food Microbiol; 2014 Sep; 42():122-31. PubMed ID: 24929727 [TBL] [Abstract][Full Text] [Related]
30. The effect of selected factors on the survival of Bacillus cereus in the human gastrointestinal tract. Berthold-Pluta A; Pluta A; Garbowska M Microb Pathog; 2015 May; 82():7-14. PubMed ID: 25794697 [TBL] [Abstract][Full Text] [Related]
31. The members of the Bacillus cereus group are commonly present contaminants of fresh and heat-treated milk. Bartoszewicz M; Hansen BM; Swiecicka I Food Microbiol; 2008 Jun; 25(4):588-96. PubMed ID: 18456114 [TBL] [Abstract][Full Text] [Related]
32. Use of sensitivity analysis to aid interpretation of a probabilistic Bacillus cereus spore lag time model applied to heat-treated chilled foods (REPFEDs). Membré JM; Kan-King-Yu D; Blackburn Cde W Int J Food Microbiol; 2008 Nov; 128(1):28-33. PubMed ID: 18691785 [TBL] [Abstract][Full Text] [Related]
33. Detection and quantification of viable Bacillus cereus group species in milk by propidium monoazide quantitative real-time PCR. Cattani F; Barth VC; Nasário JSR; Ferreira CAS; Oliveira SD J Dairy Sci; 2016 Apr; 99(4):2617-2624. PubMed ID: 26830746 [TBL] [Abstract][Full Text] [Related]
34. Characterization of single heat-activated Bacillus spores using laser tweezers Raman spectroscopy. Zhang P; Setlow P; Li Y Opt Express; 2009 Sep; 17(19):16480-91. PubMed ID: 19770863 [TBL] [Abstract][Full Text] [Related]
35. Metabolic capacity of Bacillus cereus strains ATCC 14579 and ATCC 10987 interlinked with comparative genomics. Mols M; de Been M; Zwietering MH; Moezelaar R; Abee T Environ Microbiol; 2007 Dec; 9(12):2933-44. PubMed ID: 17991024 [TBL] [Abstract][Full Text] [Related]
36. Uptake kinetics of nucleic acid targeting dyes in S. aureus, E. faecalis and B. cereus: a flow cytometric study. Walberg M; Gaustad P; Steen HB J Microbiol Methods; 1999 Mar; 35(2):167-76. PubMed ID: 10192050 [TBL] [Abstract][Full Text] [Related]
37. Hydroethidine- and MitoSOX-derived red fluorescence is not a reliable indicator of intracellular superoxide formation: another inconvenient truth. Zielonka J; Kalyanaraman B Free Radic Biol Med; 2010 Apr; 48(8):983-1001. PubMed ID: 20116425 [TBL] [Abstract][Full Text] [Related]
38. Impact of the Isolation Source on the Biofilm Formation Characteristics of Hussain M; Oh DH J Microbiol Biotechnol; 2018 Jan; 28(1):77-86. PubMed ID: 29121701 [TBL] [Abstract][Full Text] [Related]
39. Simultaneous detection of apoptosis and mitochondrial superoxide production in live cells by flow cytometry and confocal microscopy. Mukhopadhyay P; Rajesh M; Haskó G; Hawkins BJ; Madesh M; Pacher P Nat Protoc; 2007; 2(9):2295-301. PubMed ID: 17853886 [TBL] [Abstract][Full Text] [Related]
40. Air-liquid interface biofilms of Bacillus cereus: formation, sporulation, and dispersion. Wijman JG; de Leeuw PP; Moezelaar R; Zwietering MH; Abee T Appl Environ Microbiol; 2007 Mar; 73(5):1481-8. PubMed ID: 17209076 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]