These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
250 related articles for article (PubMed ID: 21872989)
1. Using cheminformatics to find simulants for chemical warfare agents. Lavoie J; Srinivasan S; Nagarajan R J Hazard Mater; 2011 Oct; 194():85-91. PubMed ID: 21872989 [TBL] [Abstract][Full Text] [Related]
2. Raman Spectroscopic Detection for Simulants of Chemical Warfare Agents Using a Spatial Heterodyne Spectrometer. Hu G; Xiong W; Luo H; Shi H; Li Z; Shen J; Fang X; Xu B; Zhang J Appl Spectrosc; 2018 Jan; 72(1):151-158. PubMed ID: 28627233 [TBL] [Abstract][Full Text] [Related]
3. Identification of Novel Simulants for Toxic Industrial Chemicals and Chemical Warfare Agents for Human Decontamination Studies: A Systematic Review and Categorisation of Physicochemical Characteristics. James T; Collins S; Marczylo T Int J Environ Res Public Health; 2021 Aug; 18(16):. PubMed ID: 34444429 [TBL] [Abstract][Full Text] [Related]
4. Ion mobility spectrometric analysis of vaporous chemical warfare agents by the instrument with corona discharge ionization ammonia dopant ambient temperature operation. Satoh T; Kishi S; Nagashima H; Tachikawa M; Kanamori-Kataoka M; Nakagawa T; Kitagawa N; Tokita K; Yamamoto S; Seto Y Anal Chim Acta; 2015 Mar; 865():39-52. PubMed ID: 25732583 [TBL] [Abstract][Full Text] [Related]
5. PBT screening profile of chemical warfare agents (CWAs). Sanderson H; Fauser P; Thomsen M; Sørensen PB J Hazard Mater; 2007 Sep; 148(1-2):210-5. PubMed ID: 17374446 [TBL] [Abstract][Full Text] [Related]
6. Binding affinity and decontamination of dermal decontamination gel to model chemical warfare agent simulants. Cao Y; Elmahdy A; Zhu H; Hui X; Maibach H J Appl Toxicol; 2018 May; 38(5):724-733. PubMed ID: 29315700 [TBL] [Abstract][Full Text] [Related]
7. Single-particle aerosol mass spectrometry for the detection and identification of chemical warfare agent simulants. Martin AN; Farquar GR; Frank M; Gard EE; Fergenson DP Anal Chem; 2007 Aug; 79(16):6368-75. PubMed ID: 17630721 [TBL] [Abstract][Full Text] [Related]
8. Detailed investigation of the radical-induced destruction of chemical warfare agent simulants in aqueous solution. Abbott A; Sierakowski T; Kiddle JJ; Clark KK; Mezyk SP J Phys Chem B; 2010 Jun; 114(22):7681-5. PubMed ID: 20469938 [TBL] [Abstract][Full Text] [Related]
9. Chemical warfare agent simulants for human volunteer trials of emergency decontamination: A systematic review. James T; Wyke S; Marczylo T; Collins S; Gaulton T; Foxall K; Amlôt R; Duarte-Davidson R J Appl Toxicol; 2018 Jan; 38(1):113-121. PubMed ID: 28990191 [TBL] [Abstract][Full Text] [Related]
10. Decontamination of chemical-warfare agent simulants by polymer surfaces doped with the singlet oxygen generator zinc octaphenoxyphthalocyanine. Gephart RT; Coneski PN; Wynne JH ACS Appl Mater Interfaces; 2013 Oct; 5(20):10191-200. PubMed ID: 24060426 [TBL] [Abstract][Full Text] [Related]
11. Blocking chemical warfare agent simulants by graphene oxide/polymer multilayer membrane based on hydrogen bonding and size sieving effect. Kim Y; Choi M; Heo J; Jung S; Ka D; Lee H; Kang SW; Jung H; Lee S; Jin Y; Hong J J Hazard Mater; 2022 Apr; 427():127884. PubMed ID: 34863570 [TBL] [Abstract][Full Text] [Related]
13. Array of Love-wave sensors based on quartz/Novolac to detect CWA simulants. Matatagui D; Fontecha J; Fernández MJ; Aleixandre M; Gràcia I; Cané C; Horrillo MC Talanta; 2011 Sep; 85(3):1442-7. PubMed ID: 21807207 [TBL] [Abstract][Full Text] [Related]
14. Mechanistic insights into the luminescent sensing of organophosphorus chemical warfare agents and simulants using trivalent lanthanide complexes. Dennison GH; Johnston MR Chemistry; 2015 Apr; 21(17):6328-38. PubMed ID: 25649522 [TBL] [Abstract][Full Text] [Related]
15. Boosted ability of ZIF-8 for early-stage adsorption and degradation of chemical warfare agent simulants. Oh S; Lee S; Lee G; Oh M Nanoscale Adv; 2023 Nov; 5(23):6449-6457. PubMed ID: 38024321 [TBL] [Abstract][Full Text] [Related]
16. Secondary ionization of chemical warfare agent simulants: atmospheric pressure ion mobility time-of-flight mass spectrometry. Steiner WE; Clowers BH; Haigh PE; Hill HH Anal Chem; 2003 Nov; 75(22):6068-76. PubMed ID: 14615983 [TBL] [Abstract][Full Text] [Related]
17. Physics-based agent to simulant correlations for vapor phase mass transport. Willis MP; Varady MJ; Pearl TP; Fouse JC; Riley PC; Mantooth BA; Lalain TA J Hazard Mater; 2013 Dec; 263 Pt 2():479-85. PubMed ID: 24225584 [TBL] [Abstract][Full Text] [Related]
18. Metal-Organic Framework- and Polyoxometalate-Based Sorbents for the Uptake and Destruction of Chemical Warfare Agents. Grissom TG; Plonka AM; Sharp CH; Ebrahim AM; Tian Y; Collins-Wildman DL; Kaledin AL; Siegal HJ; Troya D; Hill CL; Frenkel AI; Musaev DG; Gordon WO; Karwacki CJ; Mitchell MB; Morris JR ACS Appl Mater Interfaces; 2020 Apr; 12(13):14641-14661. PubMed ID: 31994872 [TBL] [Abstract][Full Text] [Related]
19. Genomics and proteomics in chemical warfare agent research: recent studies and future applications. Everley PA; Dillman JF Toxicol Lett; 2010 Oct; 198(3):297-303. PubMed ID: 20708669 [TBL] [Abstract][Full Text] [Related]
20. Sensing Chemical Warfare Agent Simulants via Photonic Crystals of the Kittle JD; Fisher BP; Esparza AJ; Morey AM; Iacono ST ACS Omega; 2017 Nov; 2(11):8301-8307. PubMed ID: 30023581 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]