These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
147 related articles for article (PubMed ID: 21873050)
1. Identification of novel BRAF kinase inhibitors with structure-based virtual screening. Park H; Choi H; Hong S; Hong S Bioorg Med Chem Lett; 2011 Oct; 21(19):5753-6. PubMed ID: 21873050 [TBL] [Abstract][Full Text] [Related]
2. Structure-based de novo design and biochemical evaluation of novel BRAF kinase inhibitors. Park H; Jeong Y; Hong S Bioorg Med Chem Lett; 2012 Jan; 22(2):1027-30. PubMed ID: 22196123 [TBL] [Abstract][Full Text] [Related]
3. Structure-based virtual screening approach to the discovery of phosphoinositide 3-kinase alpha inhibitors. Park H; Choi H; Hong S; Kim D; Oh DS; Hong S Bioorg Med Chem Lett; 2011 Apr; 21(7):2021-4. PubMed ID: 21354792 [TBL] [Abstract][Full Text] [Related]
4. Structure-based virtual screening approach to the discovery of p38 MAP kinase inhibitors. Choi H; Park HJ; Shin JC; Ko HS; Lee JK; Lee S; Park H; Hong S Bioorg Med Chem Lett; 2012 Mar; 22(6):2195-9. PubMed ID: 22342625 [TBL] [Abstract][Full Text] [Related]
5. Identification of novel inhibitors of tropomyosin-related kinase A through the structure-based virtual screening with homology-modeled protein structure. Park H; Chi O; Kim J; Hong S J Chem Inf Model; 2011 Nov; 51(11):2986-93. PubMed ID: 22017333 [TBL] [Abstract][Full Text] [Related]
6. Discovery of MEK/PI3K dual inhibitor via structure-based virtual screening. Park H; Lee S; Hong S Bioorg Med Chem Lett; 2012 Aug; 22(15):4946-50. PubMed ID: 22771009 [TBL] [Abstract][Full Text] [Related]
7. Identification of potent VHZ phosphatase inhibitors with structure-based virtual screening. Park H; Park SY; Oh JJ; Ryu SE J Biomol Screen; 2013 Feb; 18(2):226-31. PubMed ID: 23042075 [TBL] [Abstract][Full Text] [Related]
8. Structure-based virtual screening approach to the discovery of novel PTPMT1 phosphatase inhibitors. Park H; Kim SY; Kyung A; Yoon TS; Ryu SE; Jeong DG Bioorg Med Chem Lett; 2012 Jan; 22(2):1271-5. PubMed ID: 22115589 [TBL] [Abstract][Full Text] [Related]
9. Virtual screening and biochemical evaluation to identify new inhibitors of mammalian target of rapamycin (mTOR). Park H; Choe H; Hong S Bioorg Med Chem Lett; 2014 Feb; 24(3):835-8. PubMed ID: 24393580 [TBL] [Abstract][Full Text] [Related]
10. Discovery of potent inhibitors of receptor protein tyrosine phosphatase sigma through the structure-based virtual screening. Park H; Chien PN; Ryu SE Bioorg Med Chem Lett; 2012 Oct; 22(20):6333-7. PubMed ID: 22989533 [TBL] [Abstract][Full Text] [Related]
11. Identification of novel inhibitors of extracellular signal-regulated kinase 2 based on the structure-based virtual screening. Park H; Bahn YJ; Jeong DG; Woo EJ; Kwon JS; Ryu SE Bioorg Med Chem Lett; 2008 Oct; 18(20):5372-6. PubMed ID: 18835158 [TBL] [Abstract][Full Text] [Related]
12. Structure-based design of isoindoline-1,3-diones and 2,3-dihydrophthalazine-1,4-diones as novel B-Raf inhibitors. Wang X; Salaski EJ; Berger DM; Powell D; Hu Y; Wojciechowicz D; Collins K; Frommer E Bioorg Med Chem Lett; 2011 Dec; 21(23):6941-4. PubMed ID: 22024030 [TBL] [Abstract][Full Text] [Related]
13. Homology modeling and virtual screening approaches to identify potent inhibitors of slingshot phosphatase 1. Park H; Park SY; Ryu SE J Mol Graph Model; 2013 Feb; 39():65-70. PubMed ID: 23220283 [TBL] [Abstract][Full Text] [Related]
14. Potent and selective pyrazolo[1,5-a]pyrimidine based inhibitors of B-Raf(V600E) kinase with favorable physicochemical and pharmacokinetic properties. Ren L; Laird ER; Buckmelter AJ; Dinkel V; Gloor SL; Grina J; Newhouse B; Rasor K; Hastings G; Gradl SN; Rudolph J Bioorg Med Chem Lett; 2012 Jan; 22(2):1165-8. PubMed ID: 22196124 [TBL] [Abstract][Full Text] [Related]
15. Investigation of the differences in activity between hydroxycycloalkyl N1 substituted pyrazole derivatives as inhibitors of B-Raf kinase by using docking, molecular dynamics, QM/MM, and fragment-based de novo design: study of binding mode of diastereomer compounds. Caballero J; Alzate-Morales JH; Vergara-Jaque A J Chem Inf Model; 2011 Nov; 51(11):2920-31. PubMed ID: 22011048 [TBL] [Abstract][Full Text] [Related]
16. Application of a novel [3+2] cycloaddition reaction to prepare substituted imidazoles and their use in the design of potent DFG-out allosteric B-Raf inhibitors. Dietrich J; Gokhale V; Wang X; Hurley LH; Flynn GA Bioorg Med Chem; 2010 Jan; 18(1):292-304. PubMed ID: 19962319 [TBL] [Abstract][Full Text] [Related]
17. Development of novel 3D-QSAR combination approach for screening and optimizing B-Raf inhibitors in silico. Shih KC; Lin CY; Zhou J; Chi HC; Chen TS; Wang CC; Tseng HW; Tang CY J Chem Inf Model; 2011 Feb; 51(2):398-407. PubMed ID: 21182293 [TBL] [Abstract][Full Text] [Related]
18. The discovery of furo[2,3-c]pyridine-based indanone oximes as potent and selective B-Raf inhibitors. Buckmelter AJ; Ren L; Laird ER; Rast B; Miknis G; Wenglowsky S; Schlachter S; Welch M; Tarlton E; Grina J; Lyssikatos J; Brandhuber BJ; Morales T; Randolph N; Vigers G; Martinson M; Callejo M Bioorg Med Chem Lett; 2011 Feb; 21(4):1248-52. PubMed ID: 21211972 [TBL] [Abstract][Full Text] [Related]
19. Discovery and optimization of pyrazoline compounds as B-Raf inhibitors. Duffey MO; Adams R; Blackburn C; Chau RW; Chen S; Galvin KM; Garcia K; Gould AE; Greenspan PD; Harrison S; Huang SC; Kim MS; Kulkarni B; Langston S; Liu JX; Ma LT; Menon S; Nagayoshi M; Rowland RS; Vos TJ; Xu T; Yang JJ; Yu S; Zhang Q Bioorg Med Chem Lett; 2010 Aug; 20(16):4800-4. PubMed ID: 20634068 [TBL] [Abstract][Full Text] [Related]
20. Design, synthesis and biological evaluation of novel (E)-α-benzylsulfonyl chalcone derivatives as potential BRAF inhibitors. Li QS; Li CY; Lu X; Zhang H; Zhu HL Eur J Med Chem; 2012 Apr; 50():288-95. PubMed ID: 22361686 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]