These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 21873099)

  • 1. Sonochemical efficiency dependence on liquid height and frequency in an improved sonochemical reactor.
    de La Rochebrochard S; Suptil J; Blais JF; Naffrechoux E
    Ultrason Sonochem; 2012 Mar; 19(2):280-5. PubMed ID: 21873099
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of ultrasonic frequency and liquid height on sonochemical efficiency of large-scale sonochemical reactors.
    Asakura Y; Nishida T; Matsuoka T; Koda S
    Ultrason Sonochem; 2008 Mar; 15(3):244-50. PubMed ID: 17548225
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of characterization methods in high frequency sonochemical reactors of differing configurations.
    d'Auzay Sde L; Blais JF; Naffrechoux E
    Ultrason Sonochem; 2010 Mar; 17(3):547-54. PubMed ID: 19948421
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Acoustic emission spectra and sonochemical activity in a 36 kHz sonoreactor.
    Son Y; Lim M; Khim J; Ashokkumar M
    Ultrason Sonochem; 2012 Jan; 19(1):16-21. PubMed ID: 21705256
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effects of acoustic flow and mechanical flow on the sonochemical efficiency in a rectangular sonochemical reactor.
    Kojima Y; Asakura Y; Sugiyama G; Koda S
    Ultrason Sonochem; 2010 Aug; 17(6):978-84. PubMed ID: 20044295
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Numerical simulation of liquid velocity distribution in a sonochemical reactor.
    Xu Z; Yasuda K; Koda S
    Ultrason Sonochem; 2013 Jan; 20(1):452-9. PubMed ID: 22634380
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative study of sonochemical reactors with different geometry using thermal and chemical probes.
    Nikitenko SI; Le Naour C; Moisy P
    Ultrason Sonochem; 2007 Mar; 14(3):330-6. PubMed ID: 16996294
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dependence of the characteristics of bubbles on types of sonochemical reactors.
    Yasui K; Tuziuti T; Iida Y
    Ultrason Sonochem; 2005 Jan; 12(1-2):43-51. PubMed ID: 15474951
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of liquid recirculation flow on sonochemical oxidation activity in a 28 kHz sonoreactor.
    Lee D; Na I; Son Y
    Chemosphere; 2022 Jan; 286(Pt 2):131780. PubMed ID: 34358887
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A phenomenological investigation into the opposing effects of fluid flow on sonochemical activity at different frequency and power settings. 1. Overhead stirring.
    Bussemaker MJ; Zhang D
    Ultrason Sonochem; 2014 Jan; 21(1):436-45. PubMed ID: 23899480
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigation of sonochemical activities at a frequency of 334 kHz: the effect of geometric parameters of sonoreactor.
    Kim E; Cui M; Jang M; Park B; Son Y; Khim J
    Ultrason Sonochem; 2014 Jul; 21(4):1504-11. PubMed ID: 24508490
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhancement of sonochemical oxidation reactions using air sparging in a 36 kHz sonoreactor.
    Choi J; Khim J; Neppolian B; Son Y
    Ultrason Sonochem; 2019 Mar; 51():412-418. PubMed ID: 30060989
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of solution level on calorific and dosimetric results in a 70 kHz tower type sonochemical reactor.
    Little C; El-Sharif M; Hepher MJ
    Ultrason Sonochem; 2007 Mar; 14(3):375-9. PubMed ID: 17008117
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sonochemical and sonocatalytic degradation of monolinuron in water.
    Zouaghi R; David B; Suptil J; Djebbar K; Boutiti A; Guittonneau S
    Ultrason Sonochem; 2011 Sep; 18(5):1107-12. PubMed ID: 21482475
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhancement of sonochemical reaction of terephthalate ion by superposition of ultrasonic fields of various frequencies.
    Yasuda K; Torii T; Yasui K; Iida Y; Tuziuti T; Nakamura M; Asakura Y
    Ultrason Sonochem; 2007 Sep; 14(6):699-704. PubMed ID: 17336130
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigation of acoustic cavitation energy in a large-scale sonoreactor.
    Son Y; Lim M; Khim J
    Ultrason Sonochem; 2009 Apr; 16(4):552-6. PubMed ID: 19144557
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Contributions of reactor geometry and ultrasound frequency on the efficiency of sonochemical reactor.
    Kewalramani JA; Bezerra de Souza B; Marsh RW; Meegoda JN
    Ultrason Sonochem; 2023 Aug; 98():106529. PubMed ID: 37487437
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Acoustic emission from cavitating solutions: implications for the mechanisms of sonochemical reactions.
    Price GJ; Ashokkumar M; Hodnett M; Zequiri B; Grieser F
    J Phys Chem B; 2005 Sep; 109(38):17799-801. PubMed ID: 16853282
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Realization of cavitation fields based on the acoustic resonance modes in an immersion-type sonochemical reactor.
    Wang YC; Yao MC
    Ultrason Sonochem; 2013 Jan; 20(1):565-70. PubMed ID: 22959558
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effects of liquid height/volume, initial concentration of reactant and acoustic power on sonochemical oxidation.
    Lim M; Ashokkumar M; Son Y
    Ultrason Sonochem; 2014 Nov; 21(6):1988-93. PubMed ID: 24690295
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.