BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 21873104)

  • 1. Morphological appearance manifolds for group-wise morphometric analysis.
    Lian NX; Davatzikos C
    Med Image Anal; 2011 Dec; 15(6):814-29. PubMed ID: 21873104
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Morphological appearance manifolds in computational anatomy: groupwise registration and morphological analysis.
    Baloch S; Davatzikos C
    Neuroimage; 2009 Mar; 45(1 Suppl):S73-85. PubMed ID: 19061962
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The geometric median on Riemannian manifolds with application to robust atlas estimation.
    Fletcher PT; Venkatasubramanian S; Joshi S
    Neuroimage; 2009 Mar; 45(1 Suppl):S143-52. PubMed ID: 19056498
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An anatomical equivalence class based joint transformation-residual descriptor for morphological analysis.
    Baloch S; Verma R; Davatzikos C
    Inf Process Med Imaging; 2007; 20():594-606. PubMed ID: 17633732
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CLASSIFYING MEDICAL IMAGES USING MORPHOLOGICAL APPEARANCE MANIFOLDS.
    Varol E; Gaonkar B; Davatzikos C
    Proc IEEE Int Symp Biomed Imaging; 2013 Dec; 2013():744-747. PubMed ID: 24443690
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Statistical methods in computational anatomy.
    Miller M; Banerjee A; Christensen G; Joshi S; Khaneja N; Grenander U; Matejic L
    Stat Methods Med Res; 1997 Sep; 6(3):267-99. PubMed ID: 9339500
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Anatomical equivalence class: a morphological analysis framework using a lossless shape descriptor.
    Makrogiannis S; Verma R; Davatzikos C
    IEEE Trans Med Imaging; 2007 Apr; 26(4):619-31. PubMed ID: 17427746
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of MRI and cannabinoid type 1 receptor PET templates constructed using DARTEL for spatial normalization of rat brains.
    Kronfeld A; Buchholz HG; Maus S; Reuss S; Müller-Forell W; Lutz B; Schreckenberger M; Miederer I
    Med Phys; 2015 Dec; 42(12):6875-84. PubMed ID: 26632044
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Learning nonlinear image manifolds by global alignment of local linear models.
    Verbeek J
    IEEE Trans Pattern Anal Mach Intell; 2006 Aug; 28(8):1236-50. PubMed ID: 16886860
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A combined manifold learning analysis of shape and appearance to characterize neonatal brain development.
    Aljabar P; Wolz R; Srinivasan L; Counsell SJ; Rutherford MA; Edwards AD; Hajnal JV; Rueckert D
    IEEE Trans Med Imaging; 2011 Dec; 30(12):2072-86. PubMed ID: 21788184
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Automatic anatomy recognition in whole-body PET/CT images.
    Wang H; Udupa JK; Odhner D; Tong Y; Zhao L; Torigian DA
    Med Phys; 2016 Jan; 43(1):613. PubMed ID: 26745953
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Learning anatomy changes from patient populations to create artificial CT images for voxel-level validation of deformable image registration.
    Yu ZH; Kudchadker R; Dong L; Zhang Y; Court LE; Mourtada F; Yock A; Tucker SL; Yang J
    J Appl Clin Med Phys; 2016 Jan; 17(1):246-258. PubMed ID: 26894362
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Statistical modeling of 4D respiratory lung motion using diffeomorphic image registration.
    Ehrhardt J; Werner R; Schmidt-Richberg A; Handels H
    IEEE Trans Med Imaging; 2011 Feb; 30(2):251-65. PubMed ID: 20876013
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Manifold-manifold distance and its application to face recognition with image sets.
    Wang R; Shan S; Chen X; Dai Q; Gao W
    IEEE Trans Image Process; 2012 Oct; 21(10):4466-79. PubMed ID: 22752133
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spectral embedding finds meaningful (relevant) structure in image and microarray data.
    Higgs BW; Weller J; Solka JL
    BMC Bioinformatics; 2006 Feb; 7():74. PubMed ID: 16483359
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Groupwise Morphometric Analysis Based on High Dimensional Clustering.
    Ye DH; Pohl KM; Litt H; Davatzikos C
    Conf Comput Vis Pattern Recognit Workshops; 2010 Jun; 2010():47-54. PubMed ID: 28603660
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regularization in deformable registration of biomedical images based on divergence and curl operators.
    Riyahi-Alam S; Peroni M; Baroni G; Riboldi M
    Methods Inf Med; 2014; 53(1):21-8. PubMed ID: 24189937
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spatial normalization of brain images and beyond.
    Mangin JF; Lebenberg J; Lefranc S; Labra N; Auzias G; Labit M; Guevara M; Mohlberg H; Roca P; Guevara P; Dubois J; Leroy F; Dehaene-Lambertz G; Cachia A; Dickscheid T; Coulon O; Poupon C; Rivière D; Amunts K; Sun ZY
    Med Image Anal; 2016 Oct; 33():127-133. PubMed ID: 27344104
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improving thoracic four-dimensional cone-beam CT reconstruction with anatomical-adaptive image regularization (AAIR).
    Shieh CC; Kipritidis J; O'Brien RT; Cooper BJ; Kuncic Z; Keall PJ
    Phys Med Biol; 2015 Jan; 60(2):841-68. PubMed ID: 25565244
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computational anatomy: shape, growth, and atrophy comparison via diffeomorphisms.
    Miller MI
    Neuroimage; 2004; 23 Suppl 1():S19-33. PubMed ID: 15501089
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.