These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 21873259)

  • 41. The control of shoot branching: an example of plant information processing.
    Leyser O
    Plant Cell Environ; 2009 Jun; 32(6):694-703. PubMed ID: 19143993
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Meristem maturation and inflorescence architecture--lessons from the Solanaceae.
    Park SJ; Eshed Y; Lippman ZB
    Curr Opin Plant Biol; 2014 Feb; 17():70-7. PubMed ID: 24507497
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Ontogenetic patterns in the mechanisms of tolerance to herbivory in Plantago.
    Barton KE
    Ann Bot; 2013 Aug; 112(4):711-20. PubMed ID: 23589631
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Quantitative trait loci analysis reveals a correlation between the ratio of sucrose/raffinose family oligosaccharides and seed vigour in Medicago truncatula.
    Vandecasteele C; Teulat-Merah B; Morère-Le Paven MC; Leprince O; Ly Vu B; Viau L; Ledroit L; Pelletier S; Payet N; Satour P; Lebras C; Gallardo K; Huguet T; Limami AM; Prosperi JM; Buitink J
    Plant Cell Environ; 2011 Sep; 34(9):1473-87. PubMed ID: 21554325
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The 3-ketoacyl-CoA synthase WFL is involved in lateral organ development and cuticular wax synthesis in Medicago truncatula.
    Yang T; Li Y; Liu Y; He L; Liu A; Wen J; Mysore KS; Tadege M; Chen J
    Plant Mol Biol; 2021 Jan; 105(1-2):193-204. PubMed ID: 33037987
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Die for living better: plants modify root system architecture through inducing PCD in root meristem under severe water stress.
    Cao M; Li X
    Plant Signal Behav; 2010 Dec; 5(12):1645-6. PubMed ID: 21139433
    [TBL] [Abstract][Full Text] [Related]  

  • 47.
    Ghosh P; Adolphsen KN; Yurgel SN; Kahn ML
    Appl Environ Microbiol; 2021 Jul; 87(15):e0300420. PubMed ID: 33990306
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Structure and development of Medicago truncatula pod wall and seed coat.
    Wang HL; Grusak MA
    Ann Bot; 2005 Apr; 95(5):737-47. PubMed ID: 15703184
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Simulating the impact of genetic diversity of Medicago truncatula on germination and emergence using a crop emergence model for ideotype breeding.
    Brunel-Muguet S; Aubertot JN; Dürr C
    Ann Bot; 2011 Jun; 107(8):1367-76. PubMed ID: 21504913
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Genome-wide association of drought-related and biomass traits with HapMap SNPs in Medicago truncatula.
    Kang Y; Sakiroglu M; Krom N; Stanton-Geddes J; Wang M; Lee YC; Young ND; Udvardi M
    Plant Cell Environ; 2015 Oct; 38(10):1997-2011. PubMed ID: 25707512
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Regulation of compound leaf development by PHANTASTICA in Medicago truncatula.
    Ge L; Peng J; Berbel A; Madueño F; Chen R
    Plant Physiol; 2014 Jan; 164(1):216-28. PubMed ID: 24218492
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Rate of meristem maturation determines inflorescence architecture in tomato.
    Park SJ; Jiang K; Schatz MC; Lippman ZB
    Proc Natl Acad Sci U S A; 2012 Jan; 109(2):639-44. PubMed ID: 22203998
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Polymorphic responses of Medicago truncatula accessions to potassium deprivation.
    Garcia K; Ané JM
    Plant Signal Behav; 2017 Apr; 12(4):e1307494. PubMed ID: 28340327
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Dichotomous branching: the plant form and integrity upon the apical meristem bifurcation.
    Gola EM
    Front Plant Sci; 2014; 5():263. PubMed ID: 24936206
    [TBL] [Abstract][Full Text] [Related]  

  • 55. SMALL LEAF AND BUSHY1 controls organ size and lateral branching by modulating the stability of BIG SEEDS1 in Medicago truncatula.
    Yin P; Ma Q; Wang H; Feng D; Wang X; Pei Y; Wen J; Tadege M; Niu L; Lin H
    New Phytol; 2020 Jun; 226(5):1399-1412. PubMed ID: 31981419
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Genome-wide characterization of SPL family in Medicago truncatula reveals the novel roles of miR156/SPL module in spiky pod development.
    Wang H; Lu Z; Xu Y; Kong L; Shi J; Liu Y; Fu C; Wang X; Wang ZY; Zhou C; Han L
    BMC Genomics; 2019 Jul; 20(1):552. PubMed ID: 31277566
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The ecological genomic basis of salinity adaptation in Tunisian Medicago truncatula.
    Friesen ML; von Wettberg EJ; Badri M; Moriuchi KS; Barhoumi F; Chang PL; Cuellar-Ortiz S; Cordeiro MA; Vu WT; Arraouadi S; Djébali N; Zribi K; Badri Y; Porter SS; Aouani ME; Cook DR; Strauss SY; Nuzhdin SV
    BMC Genomics; 2014 Dec; 15(1):1160. PubMed ID: 25534372
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Drought and Recovery: Independently Regulated Processes Highlighting the Importance of Protein Turnover Dynamics and Translational Regulation in Medicago truncatula.
    Lyon D; Castillejo MA; Mehmeti-Tershani V; Staudinger C; Kleemaier C; Wienkoop S
    Mol Cell Proteomics; 2016 Jun; 15(6):1921-37. PubMed ID: 27001437
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A test of the reserve meristem hypothesis using Verbascum thapsus (Scrophulariaceae).
    Lortie CJ; Aarssen LW
    Am J Bot; 2000 Dec; 87(12):1789-92. PubMed ID: 11118415
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Testing the ontogenetic base for the transient model of inflorescence development.
    Bull-Hereñu K; Claßen-Bockhoff R
    Ann Bot; 2013 Nov; 112(8):1543-51. PubMed ID: 23425784
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.