These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 21873327)

  • 1. Finding recurrent copy number alterations preserving within-sample homogeneity.
    Morganella S; Pagnotta SM; Ceccarelli M
    Bioinformatics; 2011 Nov; 27(21):2949-56. PubMed ID: 21873327
    [TBL] [Abstract][Full Text] [Related]  

  • 2. VegaMC: a R/bioconductor package for fast downstream analysis of large array comparative genomic hybridization datasets.
    Morganella S; Ceccarelli M
    Bioinformatics; 2012 Oct; 28(19):2512-4. PubMed ID: 22815357
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CGHnormaliter: a Bioconductor package for normalization of array CGH data with many CNAs.
    van Houte BP; Binsl TW; Hettling H; Heringa J
    Bioinformatics; 2010 May; 26(10):1366-7. PubMed ID: 20418341
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ADaCGH: A parallelized web-based application and R package for the analysis of aCGH data.
    Díaz-Uriarte R; Rueda OM
    PLoS One; 2007 Aug; 2(8):e737. PubMed ID: 17710137
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Flexible and accurate detection of genomic copy-number changes from aCGH.
    Rueda OM; Díaz-Uriarte R
    PLoS Comput Biol; 2007 Jun; 3(6):e122. PubMed ID: 17590078
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CNAnova: a new approach for finding recurrent copy number abnormalities in cancer SNP microarray data.
    Ivakhno S; Tavaré S
    Bioinformatics; 2010 Jun; 26(11):1395-402. PubMed ID: 20403815
    [TBL] [Abstract][Full Text] [Related]  

  • 7. VEGA: variational segmentation for copy number detection.
    Morganella S; Cerulo L; Viglietto G; Ceccarelli M
    Bioinformatics; 2010 Dec; 26(24):3020-7. PubMed ID: 20959380
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functionally-focused algorithmic analysis of high resolution microarray-CGH genomic landscapes demonstrates comparable genomic copy number aberrations in MSI and MSS sporadic colorectal cancer.
    Ali H; Bitar MS; Al Madhoun A; Marafie M; Al-Mulla F
    PLoS One; 2017; 12(2):e0171690. PubMed ID: 28231327
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling recurrent DNA copy number alterations in array CGH data.
    Shah SP; Lam WL; Ng RT; Murphy KP
    Bioinformatics; 2007 Jul; 23(13):i450-8. PubMed ID: 17646330
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Determining frequent patterns of copy number alterations in cancer.
    Rapaport F; Leslie C
    PLoS One; 2010 Aug; 5(8):e12028. PubMed ID: 20711339
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computation of recurrent minimal genomic alterations from array-CGH data.
    Rouveirol C; Stransky N; Hupé P; Rosa PL; Viara E; Barillot E; Radvanyi F
    Bioinformatics; 2006 Apr; 22(7):849-56. PubMed ID: 16434445
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Piecewise-constant and low-rank approximation for identification of recurrent copy number variations.
    Zhou X; Liu J; Wan X; Yu W
    Bioinformatics; 2014 Jul; 30(14):1943-9. PubMed ID: 24642062
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genome-wide analysis of DNA copy number alterations and gene expression in gastric cancer.
    Tsukamoto Y; Uchida T; Karnan S; Noguchi T; Nguyen LT; Tanigawa M; Takeuchi I; Matsuura K; Hijiya N; Nakada C; Kishida T; Kawahara K; Ito H; Murakami K; Fujioka T; Seto M; Moriyama M
    J Pathol; 2008 Dec; 216(4):471-82. PubMed ID: 18798223
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computational methods for identification of recurrent copy number alteration patterns by array CGH.
    Shah SP
    Cytogenet Genome Res; 2008; 123(1-4):343-51. PubMed ID: 19287173
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessing copy number alterations in targeted, amplicon-based next-generation sequencing data.
    Grasso C; Butler T; Rhodes K; Quist M; Neff TL; Moore S; Tomlins SA; Reinig E; Beadling C; Andersen M; Corless CL
    J Mol Diagn; 2015 Jan; 17(1):53-63. PubMed ID: 25468433
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genome-wide assessment of recurrent genomic imbalances in canine leukemia identifies evolutionarily conserved regions for subtype differentiation.
    Roode SC; Rotroff D; Avery AC; Suter SE; Bienzle D; Schiffman JD; Motsinger-Reif A; Breen M
    Chromosome Res; 2015 Dec; 23(4):681-708. PubMed ID: 26037708
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Patterns of chromosomal copy-number alterations in intrahepatic cholangiocarcinoma.
    Dalmasso C; Carpentier W; Guettier C; Camilleri-Broët S; Borelli WV; Campos Dos Santos CR; Castaing D; Duclos-Vallée JC; Broët P
    BMC Cancer; 2015 Mar; 15():126. PubMed ID: 25879652
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Robust smooth segmentation approach for array CGH data analysis.
    Huang J; Gusnanto A; O'Sullivan K; Staaf J; Borg A; Pawitan Y
    Bioinformatics; 2007 Sep; 23(18):2463-9. PubMed ID: 17660206
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A method for finding consensus breakpoints in the cancer genome from copy number data.
    Toloşi L; Theißen J; Halachev K; Hero B; Berthold F; Lengauer T
    Bioinformatics; 2013 Jul; 29(14):1793-800. PubMed ID: 23716195
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CNAseg--a novel framework for identification of copy number changes in cancer from second-generation sequencing data.
    Ivakhno S; Royce T; Cox AJ; Evers DJ; Cheetham RK; Tavaré S
    Bioinformatics; 2010 Dec; 26(24):3051-8. PubMed ID: 20966003
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.