These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 21873636)

  • 1. iMod: multipurpose normal mode analysis in internal coordinates.
    Lopéz-Blanco JR; Garzón JI; Chacón P
    Bioinformatics; 2011 Oct; 27(20):2843-50. PubMed ID: 21873636
    [TBL] [Abstract][Full Text] [Related]  

  • 2. iMODS: internal coordinates normal mode analysis server.
    López-Blanco JR; Aliaga JI; Quintana-Ortí ES; Chacón P
    Nucleic Acids Res; 2014 Jul; 42(Web Server issue):W271-6. PubMed ID: 24771341
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coarse-grained modeling of the actin filament derived from atomistic-scale simulations.
    Chu JW; Voth GA
    Biophys J; 2006 Mar; 90(5):1572-82. PubMed ID: 16361345
    [TBL] [Abstract][Full Text] [Related]  

  • 4. iMODFIT: efficient and robust flexible fitting based on vibrational analysis in internal coordinates.
    Lopéz-Blanco JR; Chacón P
    J Struct Biol; 2013 Nov; 184(2):261-70. PubMed ID: 23999189
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ProMode: a database of normal mode analyses on protein molecules with a full-atom model.
    Wako H; Kato M; Endo S
    Bioinformatics; 2004 Sep; 20(13):2035-43. PubMed ID: 15059828
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Approximate normal mode analysis based on vibrational subsystem analysis with high accuracy and efficiency.
    Hafner J; Zheng W
    J Chem Phys; 2009 May; 130(19):194111. PubMed ID: 19466825
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhancing backbone sampling in Monte Carlo simulations using internal coordinates normal mode analysis.
    Gil VA; Lecina D; Grebner C; Guallar V
    Bioorg Med Chem; 2016 Oct; 24(20):4855-4866. PubMed ID: 27436808
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Domain decomposition-based structural condensation of large protein structures for understanding their conformational dynamics.
    Kim JI; Na S; Eom K
    J Comput Chem; 2011 Jan; 32(1):161-9. PubMed ID: 20645300
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Using normal mode analysis on protein structural models. How far can we go on our predictions?
    Cirauqui Diaz N; Frezza E; Martin J
    Proteins; 2021 May; 89(5):531-543. PubMed ID: 33349977
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coarse-Grained Protein Models and Their Applications.
    Kmiecik S; Gront D; Kolinski M; Wieteska L; Dawid AE; Kolinski A
    Chem Rev; 2016 Jul; 116(14):7898-936. PubMed ID: 27333362
    [TBL] [Abstract][Full Text] [Related]  

  • 11. SimRNA: a coarse-grained method for RNA folding simulations and 3D structure prediction.
    Boniecki MJ; Lach G; Dawson WK; Tomala K; Lukasz P; Soltysinski T; Rother KM; Bujnicki JM
    Nucleic Acids Res; 2016 Apr; 44(7):e63. PubMed ID: 26687716
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multiscale Coarse-Graining via Normal Mode Analysis.
    Xia F; Lu L
    J Chem Theory Comput; 2012 Nov; 8(11):4797-806. PubMed ID: 26605632
    [TBL] [Abstract][Full Text] [Related]  

  • 13. FRODOCK 2.0: fast protein-protein docking server.
    Ramírez-Aportela E; López-Blanco JR; Chacón P
    Bioinformatics; 2016 Aug; 32(15):2386-8. PubMed ID: 27153583
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coarse-grained simulations of conformational dynamics of proteins: application to apomyoglobin.
    Haliloglu T; Bahar I
    Proteins; 1998 May; 31(3):271-81. PubMed ID: 9593198
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Density-cluster NMA: A new protein decomposition technique for coarse-grained normal mode analysis.
    Demerdash ON; Mitchell JC
    Proteins; 2012 Jul; 80(7):1766-79. PubMed ID: 22434479
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Applications of Normal Mode Analysis Methods in Computational Protein Design.
    Frappier V; Chartier M; Najmanovich R
    Methods Mol Biol; 2017; 1529():203-214. PubMed ID: 27914052
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fast and accurate computation schemes for evaluating vibrational entropy of proteins.
    Xu B; Shen H; Zhu X; Li G
    J Comput Chem; 2011 Nov; 32(15):3188-93. PubMed ID: 21953554
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Normal mode calculations of icosahedral viruses with full dihedral flexibility by use of molecular symmetry.
    van Vlijmen HW; Karplus M
    J Mol Biol; 2005 Jul; 350(3):528-42. PubMed ID: 15922356
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Predicting large-scale conformational changes in proteins using energy-weighted normal modes.
    Palmer DS; Jensen F
    Proteins; 2011 Oct; 79(10):2778-93. PubMed ID: 21905106
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetic Monte Carlo method applied to nucleic acid hairpin folding.
    Sauerwine B; Widom M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Dec; 84(6 Pt 1):061912. PubMed ID: 22304121
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.